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ABSTRACT

values are assigned to the targets and the objeclive is to assign weapons to
"irgets so as to minimize the total expected value of the surviving targets

",ifter all weapons have been fired. In the Asset-Based problem, corresponding
to preferential defense, we assume that each target is aimed to an asset and,
if not intercepted, destroys it with some given probability. Values are assigned
to each asset and the objective is to assign weapons to targets so as to maximize
the total expected value of the surviving assets.

* We will present analytical results for simple cases of the Dynamic Target-Based
problem as well as asymptotic results as the number of targets goes to infinity.
A sub-oDtimal algorithm for the Static Asset-Based problem together with an
analytic,.l bound on the optimal value will also be provided. A sub-optimal algo-
rithm for the Dynamic Asset-Based problem will be presented together with a
computational bound on the optimal value. Several numerical and sensitivity analysis
results will be given. Generally, under suitable assumptions, we show that
dynamic strategies can approximately double the defense effectiveness as compared
to their static counterparts.
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ABSTRACT

We consider a clkss of dynamic resource allocation problems a specific example of which
is the Weapon-Target Assignment problem. This problem is concerie,4 with the optimal
assignment of resources in a military engagement. These problems are, in general, NP-
Complete, so our aim is to provide insight into the problem and its solution. We will
provide analytical results for simple cases of the problem. We will also provide sub-optimal
"algorithms, together with bounds or. the objective function, under certain assumptions.

The battle scenario of the military engagement being modeled is as follows. 'I ,ie offense
launches a number of weapons (the targets) which are aimed at valuable assets of the defense.
The defense has a number of defensive weapons each of which can engage at most one
target. The outcome of such an engagement is stochastic. In the static scenario all weapons
are fired simultaneously. In the dynamic scenario some weapons are assignpd and fired
and the outcomes of these engagements are observed before further assignments are made.
Two objective functions will be considered. In the Target-Based problem, corresponding
to weighted subtractive defense, values are assigned to the targets and the objective is to
assign weapons to targets so as to minimize the total expected value of the surviving targets
after all weapons have been fired. In the Asset-Based problem, corresponding to preferential
defense, we assume that each target is aimed at an asset and, if not intercepted, destroys it
with some given probability. Values are assigned to eaclh asset and the objective is to assign
weapons to targets so as to maximize the total expected value of the surviving assets.

We will present analytical results for simple cases of the Dynamic Target-Based problem
as well as asymptotic results as the number of targets goes to infinity. A sub-optimal algo-
rithm for the Static Asset-Based problem together with an analytical bound on the optimal
value will also be p'ovided. A sub-optimai algorithm for th. Dynamic Abset-Based prob-
lem will be presented together with a computational bound on the optimal value. Several
numerical and sensitivity analysis results will be given. Generally, under suitable assump-
tions, we show that dynamic strategies can approximately double the defense effectiveness
as compared to their static counterparts.
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Chapter 1

Introduction

A resource allocation problem is one in which a set of resources must be allocated to a

set of utilities so as to optimize some given criterion. Some examples of resource allocation

problems include the allocation of personnel to jobs (e.g. the assignment of nurses to shifts),

the allocation of machines to tasks (e.g. in manufacturing) and the assignment of weapons to

targets in a military conflict. These problems can be stated as mathematical optimization

problems aiid solved. The weapon to target assignment problem, the main focus of this

thesis, will be discussed in detail in the next section.

The class of problems we will consid5,r has certain basic properties which restrict the

solution methods that can be used. Resources can only be assigned in integral quantities.

Problems with this property are called Integer Programming problems. Note that under

this restriction the number of feasible solutions is finite. However, we will be concerned

with Large-Scale problems. For th,!se problems the number of feasible solutions is so large

that complete enumeration and evaluation of each feasible solution is an impractical option.

Another property of the class of problems to be considered is that the resources will

be assumed to be error prone. In other words, the action of a resource on a utility has a

stochastic outcome. With some given probability the resource will have no effect on the

utility. Because of this, the objective to be optimized will be the expected value of some

perforr mnce measure'.

We will also be looking at problems in which resources are -isigned in time stages. In

13



CHAPTER 1. INTROD UCTION 14

each stage some of the available resources will be assigned to utilities. The effect of these

resources on the utilities will be observed before the assignments in the following stage are

made. Note that these observations are useful because of the failure prone nature of the

resources. If the resources were not failure prone then the outcomes would be deterministic

and can be determined in advance. Resources will also be assumed to be non-renewable so

that once one is used it cannot be assigned in a later stage.

Most of the rasource allocation problems that have been studied in the literature have

a linear objectii e function. In other words the benefit of each utility increases linearly with

the number of resources assigned to it. The resource allocation models in this thesis all

have nonlinear objectives. One of these objective functions will be convex. The other will

be neither convex nor concave.

The issues which arise in solving the problems with these properties can best be discussed

if we look at a specific class of problems. In the next section we will describe a motivating

example for our research, the weapon to target assignment problem. Throughout the thesis

we will use this example to illustrate our results.

1.1 Motivating Example

In this section we will describe the weapon to target allocation problem. This problem,

which is used to model the defense of assets in a military conflict, can be described as

follows. The offense (the enemy) launches a number of offensive weapons which are aimed

at valuable assets of the defense. Since these weapons will be the targets of the defense's

weapons, henceforth we will call them targets. Each of these targets is aimed at exactly one

of the defense's assets and, if it is not intercepted, it destroys the asset with some lethality

probability. We will assume that the impact of a target on an asset is independent of all

other targets and assets. The defense has a number of defensive weapons with which to

engage these incoming targets. The engagement of a a target by a weapon will be modeled

as a stochastic event. A probability, called a kill probability, will be assigned to each

weapon-target pair. This will be the probability that the weapon destroys the target if it is
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assigned to it. We will assume that the engagement of a weapon-target pair is independent

of all other weapons and targets. Note that a particular target may be engaged by more

than one weapon in a particular stage (Salvo attaks).'

Two different objectives of the defense will be considered. In the Target-Based version

of the problem, values will be assigned to the incoming offensive weapons and the objective

is to assign defensive weapons to these targets so as to minimize the expected total value of

the targets which survive after all engagements. Target-Based problems correspond to what

is called weighted subtractive defense. In the Asset-Based version of the problem, values

are assigned to the defended assets and the objective of the defense is to assign weapons to

targets so as to maximize the expected total value of the assets which survive the offense's

attack. Asset-Based problems lead to preferential defense tactics. One can show that the

Target-Based version of the problem is a special case of the Asset-Based problem in which

exactly one target is aimed at each of the assets. If the value of the asset i3 assigned to

the target aimed for it, then the corresponding Target-Based problem is equivalenTt to the

Asset-Based one.

In the static versions of the Target-Based and Asset-Based problems we will assume that

all weapons are assigned and fired simultaneously. Damage assessment is made after all

weapon-target engagements. In the case of the Target-Based problem this is the assessment

of the set of surviving targets while in the Asset-Based problem it is the assessment of the

set of destroyed assets. We will refer to these as the Static Target-Based Weapon-Target

Allocation Problem and the Static Asset-Based Weapon-Target AllUcation Problem.

The major focus of this thesis is the analysis of the dynamic versions of the Target-Based

and Asset-Based problems. In the dynamic problem, weapons are allocated in stages with

the assumption that the outcomes (i.e. survival or destruction of each target) of the wapon-

target engagements of the previous stage are observed (perfectly) before assignments for

the present stage are made. We will assume that each weapon can be used only once.

'The weapon-target allocation problem is but one of the many problems that need to be addressed in
the field of Command and Control (C2 ) theory. The perspectives paper by Athans [1] presents some of the
other basic problems in the theory of C 2 systems.
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Note that, in practice, it is not possible to observe perfectly the outcome of each weapon-

target engagement. This is due to the fact that there will only be a limited number of

kill assessment sensors. Furthermore these sensors will be imperfect. Also note that the

problem does not conttin any information concerning the geometries of the weapon-target

engagements. In practice it is possible for some of these weapons to ;ncapacitate more than

one target depending on the geometry of intercept. Since information is being fed back in

the dynamic model one would expect that it will have a better performance than the static

one. The dynamic versions of the Target-based and Asset-based problems will be called the

* Dynamic Target-Based Weapon-Target Allocation Problem and the Dynamic Asset-based

Weapon-Target Allocation Problem respectively.

One may ask why consider the Targ,%t-Based problem if it is a special case of the Asset-

Based problem. The reason is that the Asset-Based problem requires more information

* [(the targeted defense a!.sets) for its formulation than the Target-Based problem. If this

* information is available, then the Asset-Based formulation is more appropriate. However,
t4

if it is not available, then the defense has to use the Target-Based formulation.

Target-Based objectives lead to subtrnrtive defense strategies. In other words the defense

* tries to kill as many of the most lethal targets as possible, or at least the most valuable

ones. On the other hand Asset-Based objectives lead to preferential defense strategies. In

such strategies the defense decides which of its assets should be saved and concentrates

all of its weapons on saving these assets. In order to do this however, some of the assets

must be sacrificed (i.e left completely undefended). Note that by directing multiple targets

at an asset, the offense is in effect trying to make a subtractive defense useless. This is

because ii: a subtractive defense it is likely that at least one of the targets aimed at an

asset will ,et through, and that the asset will almost su:ely be destroyed. On the other

hand, a preferential defense requires much morc information because, the defense has to

know the point of impact of each target. If this information is not available, then the best

that the defense can do is to use a subtractive defense. Therefore an understanding of both

the Target-Based and Asset-Based problems is needed in order to produce the best defense
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possible.

In the early stages of an attack, the defense may have very limited knowledge of the

trajectories of the targets. It assigns values to the targets based on factors such as target

type, probable point of impact, etc. It then assigns weapons to targets with the objective

of minimizing the total expected value of the surviving targets after all weapon-target

engagements.

In the later stages of the attack the defense may be able to predict the impact of the

targets with high probability. These points of impact will be the assets of the defense which

will consist of military installations, population centers, Command and Control (C2) nodes,

weapon farms, harbors, etc. In order to model the accuracy and reliability of the targets,

we will include a parameter called a lethality probability for each target. The lethality

probability of a target-asset pair is the probability that the target destroys the asset to

which it is aimed if it is not engaged by any of the defense's weapons. This probability

will depend on the accuracy of the target as well as the nature (i.e. hardness) of the asset.

Since the lethality probabilities of the targets will typically be close to unity, the only way

to effectively save an asset is to destroy all of the targets aimed for it. Therefore, for this

situation a more appropriate objective is as follows. Assign values to each of the assets and

assign weapons to targets so as to maximize the total expected value of the surviving assets

after all weapon-target engagements and after all target impacts. Note that different assets

will have inherently different values. The value of an asset will depend on the importance

of the asset to the defense. In order to save a particular asset, all of the targets aimed for

the asset must be engaged, otherwise the asset will be destroyed by the targets which are

not engaged.

The efficient solution of the Weapon-Target assignment problem is of great interest to

the military. The reason for this is that, in an engagement with the enemy, the problem

r must be solved in real time. The enormous combinatorial complexity of the problem implies

that, even with the supercomputers available today, optimal solutions cannot be obtained in

real-time. One must therefore develop good heuristics for solving the problem. To provide
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good heuristics one must have a thorough understanding of the properties of the problem

and its solution. Our intent is to provide properties which will be of use to those who need

to provide heuristics.

The main properties of the weapon-target allocation problems can be summarized as

"folluws:

NP-Complete: Simple versions of the Target-Based problem have been shown to be NP-

Complete [2]. This basically means that there are no efficient methods for finding the

optimal solution 2; one must essentially resort to complete enumeration of all possible

allocations. This is an important property since it implies that one should look at even

simpler versions to gair insight. This insight can then be used to provide heuristics

for the more general problem. Note that more general versions, e.g. the Asset-Based

problem, will also be NP-Complete.

Discrete: The feasible solutions of these problems are restricted to be integral since only

an integral number of weapons can be assigned to a target. Integer programming

problems are, in general, difficult to solve.

"Dynamic: In the case of the dynamic problem one must decide when and to which of the

targets each weapon must be assigned. The number of possible allocations therefore

grows (exponentially) with the namber of time periods. This increases the compu-

tational complexity of the problem. However, as we shall see, this "look-shoot-look-

shoot..." type of strategy can significantly improve defensive effectiveness.

Nonn.inear" As we have mentioned before, the objective fhinctin of the problems are non-

linear. In some versions it its convex, while in the more general version it is neither

"convex nor concave.

Stochastic: The problems to be considered are stochastic in nature. The task of evaluating

the value of an assignmei.A grows with the number of possible outcomes. In the
2See Lewis and Papadimitriou [3] for the definition of an NP-Complete problem.

wa1

MEN.
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dynamic version of the problem the number of outcomes grows exponentialdly with

the number of time periods. Therefore, for large-scale problems, the task of simply

evaluating the value of an assignment may not be possible in practice. This increases

the difficulty of the problem since approximations must be used.

Large-Scale: The main application of the problems to be considered is that of military

defense. For such problems the number of weapons, assets, and targets is enormous.

This implies that enumeration techniques are impractical.

These properties of the problem rule out any hope of obtaining efficient optimal algorithms.

The purpose of this thesis is therefore to deduce properties of the problem as well as its

solution which will be useful in providing good heuristics. Wherever it is possible, we will

provide rigorous arguments. Wherever it is appropriate we will provide simple exampIcs

and computational results.

1.2 Literature Survey

The Weapon-Target assignment problem is ar. important problem in military defense. Some

of the papers that have been written on the subject will be briefly summarized in this section.

In [4], denBroeder et al. consider the special case of the Static Target-based problem

in which the kill probability of a weapon-target pair is independent of the weapon (i.e a

single class of weapons). They present an optimal algorithm for solving this version of the

problem. This algorithm, which is usually referred to as the Maximum Marginal Return

(MMR) algorithm in the literature, will be discussed in more detail in chapter 2. Kattar

implemented this algorithm and presents some numerical results in [5].

Matlin [6] provides a review of the literature on weapon-target allocation problems.

Several references are U;ven and are classified by the model under consideration. Eckler

and Burr [7] also give a review of the material on weapons allocation problems. Besides

giving references, they summarize different mathematical models and provide some analysis.

Rtowever, in these studies, very little emphasis is given to the dynamic allocation of weapons
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which is the main focus of our research.

A major result, obtained by Lloyd and Witsenhausen [2], is that the Static Target-based

problem is NP-Complete. What this means is that the computation time of any optimal

algorithm for the problem will trow exponentially with the size of the problem. Since this

version of the problem is a special case of all the other versions being considered, we can

conclude that the other versioads are also NP-Complete.

In [8] Soland considers the dynamic version of the Asset-based problem under the as-

sumptions that there is a single asset and that at each stage the kill probability is the same

for all weapon-target pairs. He uses stochastic dynamic programming and provides some

numerical results. It cap be shown that the single-asset, dynamic asset-based problem can

be formulated as a dynamic target-based problem with unit-valued targets. Hence, our

results for the dynamic target-based problem (chapter 3) can be applied to the problem

studied in Soland's paper.

In [9] Burr et al take a different approach to the weapon-target allocation problem.

Instead of fixing the number of defensive weapons and minimizing the amount of damage

caused by the offense's weapons, they minimize the number of defensive weapons needed by

the defense to provide a given level of defense (i.e. an upper bound on the damage caused

*' by the offensive weapons).

A group at Alphatech Inc., under the leadership of Dr. D. A. Castafion, has examined

both target-based and asset-based problems in the context of the Strategic Defense Syatem.

Their recent reports, although unclassified, are restricted and the author did not have access

to these documents. On the other hand, personal communication with Dr. Castafion [10]

ensured that no serious duplication of effort and results occurred.

In conclusion, we have found that the open literature on the dynamic versionZ of the

target-based and asset-based problems is scant. Furthermore, the literature which addresses

the dynamic problem contains few analytical results because of the difficulty of the probleni.

Computational results are also limited because most of these are restrictee. Our research

will focus on the dynamic versions of the target-based and asset-based problems. We will

I- - ~ - . * , - - - - - - - - - - -- -
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provide both analytical and computational results. Since our research is unrestricted, it can

serve as a starting point for those interested in this line of research.

1.3 Contributions of Thesis

In Chapter 2 we will present the Static Target-Based WTA Problem. This problem has

been shown, by Lloyd and Witsenhausen [2], to be NP-Complete. We have obtained an

optimal local search algorithm for the case of a single class of weapons. This algorithm may

be preferable to other algorithms fo; solving this version of the problem because it is easily

parallelizable.

In Chapter 3 we will present the Dynamic Target-Based WTA Problem. This problem is

also NP-Complete so we looked at some special cases. For the case of identical targets and

a uniform kill probability that is independent of the stages, we obtained analytical solutions

for the case of two targets and in the limit as the number of targets goes to infinity. These,

as well as numerical results, were then used to compare dynamic and static strategits. This
comparison is important since it shows that there is a significant performance advantage in

using a dynamic strategy instead of a static one. Under suitable assumptions we will show

that, approximately half as many weapons are required for a dynamic strategy to obtain

the same performance as a static one. We also obtained an analytical solution in the limit

as the number of targets goes to infinity under the assumptions of identical targets and

stage dependent (but weapon and target independent) kill probabilities. This provides us

with a good approximation for problems with many targets. It can be used to investigate

how the solution changes as the kill probability in each stage varies. We also looked at

the case of weapon independent (but stage and target dependent) kill probabilities. Under

these assumptions, the problem is still difficult because multiple local optima may exist.

However, if the number of weapons to be used in each stage is fixed, then we can show
that a greedy algorithm is optimal for the case of two targets. The key contribution of this

chapter is our asymptotic result for the case of unit valued targets and stage dependent kill

probabilities. We can conclude that, in general, the performance of the dynamic strategy is
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significantly greater than that of the static strategy. Furthermore, a good heuristic for the

dynamic strategy is to use a MMR type algorithm.

In Chapter 4 we will present the Static Asset-Based WTA Problem. We will assume that

the kill probabilities are independent of the weapons (since the problem is NP-Complete

otherwise). The question as to whether or not the problem under the assumption of weapon

independent kill probabilities is NP-Complete or not is still open. Under this assumption

we have obtained a sub-optimal algorithm which produced near-optimal solutions for the

"problems on which it was applied. The algorithm also produces an upper bound on the

optimal value for the problem. We believe that this is the best available algorithm for

solving this version of the Static Asset-Based problem. The algorithm was used to obtain

several numerical and sensitivity analysis results. From these results we will conclude that

the optimal value for the problem is very sensitive to the kill probabilities but insensitive

to the lethality probabilities. We will also find that, as the offense increases the number of

targets, the defense must increase the number of defense weapons at a greater rate in order

to maintain the same level of defense.

In Chapter 5 we will present the Dynamic Asset-Based WTA Problem. We will assumc

that the kill probability of a weapon-target pair is dependent solely on the asset to which the

target is aimed as well as the stage number. This assumption was made for two reasons, (a)

to reduce the dimensionality of the problem and (b) the problem is NP-Complete otherwise.

Note that even under these assumptions we believe that the problem is still NP-Complete.

Our belief is based on the fact that to evaluate the value of a first stage assignment may

require an exporential number of operations. We have obtained a sub-optimal algorithm

for this version of the problem. A method is also provided for obtaining an upper bound

on the optimal value. This algorithm is unique in that it approximates the cost-to-go
function in the present stage rather than approximating the cost function for the last stage.

Computational results show that the algorithm performs well. The key contribution of this

chapter is the proposed heuristic. We can use our results to conclude that the dynamic

strategy cat offer a significant increase in performance over the static strategy.
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The Static Target-Based Problem

In this chapter we will present the static version of the Target-Based WTA problem. This

problem has been well studied in the literature. It has been shown by Lloyd and Witsen-

hausen [2] to be an NP-Complete problem in general. Therefore only sub-optimal algorithms

have been proposed for its solution. In the case of a single class of weapons an optimal al-

gorithm has been proposed by deuBroeder et al. [4]. The material presented in this chapter

is essential for a complete understanding of the results in later chapters.

This chapter is essentially a review of the literature on the Target-B. ;ed problem. In

section 2.1 we will give a mathematical statement of the problem. In section 2.2 we will

consider the case of a single class of weapons. In this case the kill probabilities are solely

dependent on the targets. The optimal algorithm of denBroeder et al. [4] will be presented

in this section. We will also present a new optimal local search algorithm for solving this
special case of the problem. In section 2.3 we will present a network flow formulation of the

problem under the more general assumption that the kill probability of each weapon-target

pair 5 -athe, zero or, fon-zero, it is solelytargetdepender.t. A network flow approach has

the advantage that several algorithms alre;d,,y exist for network flow optimization problems.

Also in section 2.3 we will present a network flow formulation of the problem under the sole

restriction that at most one weapon can be assigned to each target. Several algorithms are

available for solving such problems. In section 2.4 we will present a method for obtaining a

lower bound on the optimal cost of the problem. Thin lower bound is obtained by relaxing

23
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the constraint that weapons must be assigned in integral quantities. Nonlinear programming

techniques can then be used to solve this relaxed problem. One such method is to find and

4 solve the dual of the problem. In 2.5 we will presew* our conclusions.

2.1 Problem Definition

In this version of the problem, the offense launches its weapons (the targets of the defense)

at the defense's assets. The defense assigns values' to these targets based on the predicted

target type, the value of the predicted point of impact and other relevant factors. The

defense has weapons which can be used to engage these targets before they impact. A

one-to-one kill probability is assigned to each weapon-target 1.. ir. This is the probability

that the weapon destroys the target if it is assigned to it and reflects such factors as the

weapon type, the time and geometry of intercept, the characteristics of the engagement of

the specific weapon-target pair and other relevant factors. Therefore, in general, the kill

probability of a particular weapon-target pair will be different to the kill probabilities of

all other weapon-target pairs. The objective of the defense is to assign its weapons to the

targets so as to minimize the expected total value of the surviving targets. Note that in the

optimal assignment some high valued targets may be engaged by more than one weapons

while others (with low values) may not be engaged by any weapons.

* In this version of the problem all weapons are assigned and fired simultaneously. Since

there is no time dependence, we will call this a static problem. We will also assume that the

state of the targets (survived or destroyed) is observed after all weapoxs have been fired.
In other words there is no fedback lf informaionn This srn,1iption will be valid in cases

in which the defense has only a s'ngle opportunity to engage the targets. This would occur

in confl.'ts in which the flight duration of the targets is short.

We will also assume that the engagement of a weapon.-target pair is independent of all

other weapons and targets. In practice this assumption may not hold for all engagements

because targets near a weapon-target interception will be affected by the debris of the

'Note that it would be more appropriate to call these target costs but we wish to conform to the notation
used in the literature.
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explosion. However, the problem i., very difficult without this assumption because one must

then include the geom( ry of the problem.

The following notation will be used in the mathematical definition of the Static Target-

Based problem. The definitions of all additional notation may be found in Appendix A.

N e'! the number of targets (offense weapons),

M f the number of defense weapons,
Vi 4d-- the value of target i, i = 1, 2,. .. , N,

def

pij = the probability that weapon j destroys target i if it is assigned to it,

i = 1, 2,. .. , N, j = 1,2,...,M.

The decision variables will be denoted by:

j 1 if weapon j is assigned to target i,{ 0 otherwise.

The probability that target i is not destroyed by weapon j is given by (1- pilj)',. Therefore,

since it was assumed that the engagement of a target by a weapon is independent of all

other target, and weapons, the probability that target i survives after all weapons have

been fired is given by FlN I(I - p'ji)•'. The problem is therefore given as follows.

Problem 2.1 The Static Target-Based WTA problem (STB) can be stated as:
N M

min F = E Vi (1. pij)xu,
{i,E{O,1)) i=1 j=1

N

subject to Zzij 1, j 1,2,... ,M.
i=-1

The objective function, F : {0, 11NM -- N, is the total expected value of the surviving

targets. We will show that this function is convex. 2 The constraint is due to the fact that

each weapon must be assigned to exactly one target.
2 Note that convex functions are defined in convex seli: (see definition A.3.) The set in which F is defined

is not convex so it is incorrect to discuss the convexity of this function. In this context, what we really mean
is that if we relax the integrality constraint (i.e allow 0 < xj < 1) then the function F is convex in this set.
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.! Theorem 2.1 If we reloax the integrality constraint and allow 0 !_ x• j 5 1 then the function

* F : [0, 1]NM .---+ R, as defined in problem 2.1, is convex.

Proof: Since the sum of convex functions is convex then we only need to show that the

function fl-t(1 - p(I)xti is convex for each index i. Let us drop the subscript i and prove

that the function
M

j=l

is convex in the set [0, 1]AM. Pick f E [0, 1]M and Z' E [0, 1]M and let A E [0, 1]. Define

We have

\g(y-) + (1 - AMY~i) WIN gz[ + (1 - \)],

and we also have

Y(A\V+ (1 - A)z))

The function OA is a convex function of A. Furthermore the function A\O +- (I - A) for

A C [0, 1] is a chord of the function &x. Therefore

0,\ < a¢+ E1-x,[,]

Since g(Z') > 0 we can conclude that

Ag(y) .4 (1 - A)g() 2! g(AFj+ (1 - A)z").

Trh. .mplics that the fuanction g(,•;) ;i co.nvex whirh imnlies that the function F is convex.

Figure 2.1 contains a pictorial representation of the problem. The circles on the left

represent the weapons while those on V ! right represent the targets. For each weapon-

target pair with non-zero kill probability an arrow is dr.-wn from the weapon to the target

and labelled with the kill probability of the pair. Each of the targets is labelled with its

I
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Weapons Targets
1

2 Vi

3 °2

Figure 2.1: Representation of a Static Target-Based Problem

value. Note that a close inspection of such a graph can lead to the di::covery of any special

structure. This-special structure can then be exploited to decrease the computational time

or to increase the quality of the solution obtained by a heuristic.

Problem 2.1 has been proven by LLoyd and Witsenhausen [2] to be NP-Complete.

Basically what this means is that, if a polynomial time algorithm exists for solving this

problem then one also exists for solving many other di ficult problems such as the travelling

salesman problem. At present, the belief is that polynomi;a time algorithms do not exist

for this class of problems. Note that, although the set of ieasible solutions is finite, the

number of them, NM, is so large that complete enumeration is not a practical option.
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We will see in the next section that if we assume that the kill probabilities do not depend

on the weapons (i.e. we have a single class of weapons) then the resulting problem can be

solved by a polynomial time algorithm. This implies that the basic difficulty of the problem

stems from the fact that there are multiple types of weapons. The problem is also difficult

because of the non-linearity of the objective function.

The complexity of the problem suggests that one should rely on sub-optimal algorithms.

NWe will look at optimal algorithms for special cases of the problem. These may then be

used as heuristics for the general proble.m 2.1.

2.2 A Single Class of Weapons

In this section we will present two optimal algorithms for solving problem 2.1 under the

additional assumption that the kill probabilities are independent of the weapons, i.e. pij

pi. This assumption is valid if the defense has a single type of weapon and all weapons are

located in the same area so that the geometry and time of intercept is the same for all of

them.3 Even if the assumption is not valid, the results of this section can easily be modified

to provide a heuristic for the more general version of the problem. Under this assumption,

the subscript j can be dropped and we can use the following notation:
def

A = the kill probability of a weapon on target i, i = 1,2..., N,
def

the number of weapons assigned to target i, (the decision variable),
def Izi,...,XN]T,

ZN 4-PY the set of ordered N-tuples of non-negative integers.

"3 Such a grouping of weapons itt called a weapon cluster in the literaturc.
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We can use these simplifications in the notation to restate the problem.

Problem 2.2 The Single Weapon Class, Static Target-Based Problem (SSTB) can be stated

as:
N

u _. Vi (-
i=1

subject to ENx = M.
i=1

Note that the objective function, F : ZN --- R, is convex and separable. These properties

reduce the difficulty of the problem.

There axe two algorithms that are guaranteed to find the optimal solution to problem

2.2. The first one, due to denBroeder et a]. [4] is called the Maximum Marginal Return

(MMR) Algorithm. This is a Folynomial time algorithm with a computational complexity

of O(N + M log N). This implies that problem 2.2 is polynomial time solvable. The secoad

algorithm, due to us, starts from a feasible solution and locally searches for a better solution.

We will therefore call this a Local Search (LS) algorithm. The latter algorithm has the

advantage that, if small changes in the problem parameters are made then little additional

work is required to obtain the new optimal solution.

2.2.1 The Maximum Marginal Return Algorithm

In the Maximum Marginal Return algorithm, weapons are assigned sequentially to the

target for which the reduction in the objective cost is maximum. The algorithm terminates

after all weapons have been assigned. The Pidgin Algol code for the algorithm is given in

figure 2.2.

The marginal return of adding an additional weapon to a target is represented by Ai.

The target with the maximum return is found and the number of weapons assigned to this

target is increased by one. The marginal return of this target is updated and the procedure
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procedure MMR
begin

S= [0_.. . , ]T;

for i 1:N do A,:= Vipi
for 1:M do
begin

Let k be such that Ak = maxi{Ai};
k :--z + 1;

Ak Vkpk(1 - Pk)•;

end
end

Figure 2.2: The Maximum Marginal Return Algorithm applied to the Single Weapon Class,
Static Target-Based problem.

is repeated until all weapons have been assigned. Note that the marginal return if Xj is

increased by one is given by

Ai = ViL(l - pi)` - (1 - pi) X+l] =vi( - pi)`.

Since initially xi = 0 for all targets i then the initial marginal returns are given by A = Vipi.

Theorem 2.2 The assignment produced by the MMR algorithm is optimal for problem .2.

Proof: Since the functions Vi(l - pi)i are convex then problem 2.2 satisfies the condition:

that are required in order to apply theorem B.1. Theorem B.1 can therefore be applied to

prove optimality. The application of the theorem is straightforward. N

Note that the assignmeni of a weapon to a target reduces the target's probability of

survival. One way to reflect this is to reduce the target's value to its expected surviving

value. This is precisely what the MMR algorithm does. It assigns the first weapon to the

target for which the resulting reduction in value is maximal. The val|ue of this target is

reduced to its expected surviving value and the process is repeated until all weapons are

assigned.

The MMR algorithm is extremely simple as well as fast. The marginal returns can
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procedure LS
begin

let Z be any feasible assignment;
for i = 1:N do Ai := Vpi(l -pi)r'
modified:= TRUE;
while (modified == TRUE) do
begin

modified := FALSE;
for i = hN do
for j = l:N do
begin

if Aj/(1 - pi) < Aj and zi > 0 then
begin

Zi :-- ri -- 1;

zj + 1;
modified:= TRUE;

end
elseif A,/(1 -pi) < A, and zj > 0 then
begin

Xj :-- j - 1;
zi := xi + 1;
modified:= TRUE;

end
end

end
end

Figure 2.3: The Local Search Algorithm

initially be numerically ordered in O(N) time. After each iteration, the updated marginal

return must be re-inserted into the list. This can be done in 0(log N) time. Since the num-

ber of iterations is M, the computational complexity of the algorithm is O(N + M log N).

2.2.2 The Local Search Algorithm

The Local Search Algorithm starts with any feasible solution to the problem. It then

--arches for a pair of targets such that the removai of a weapon from one of the targets and

the addition of this weapon to the other target reduces the cost. This process is repeated

until no more reductions can be made. This is called a local search algorithm since it

searches for a descent direction in the neighborhood of the present solution. The code for

this algorithm is given in figure 2.3.
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The marginal returns Ai are first computed for each target i. For each pair of targets

i and j with x, > 0 we check to see if removing a weapon from target i and adding it to

target j decreases the objective cost. Note that the increase in cost if a weapon is removed

from target i is given by Vi(1 - p)x-. Since Ai = Vi(1 -pi)"i then the increase in cost can
A'A also be written as Ai/(1 -pi). Note that for each iteration in which the solution is updated

the objective cost is strictly decreased. Since the number of feasible solutions is finite then

the algorithm must terminate after a finite number of iterations.

Theorem 2.3 The assignment produced by the LS algorithm is optimal for problem 2.2.

Proof: Let F* denote the vector of optimal assignments and let ;i denote the assignment

obtained on termination of the LS algorithm. Let F(E*) and F(x) denote the corresponding

costs. Let us assume that F(i•) < F(:F) (i.e. that the solution produced by the LS algorithm

is not optimal). This implies that there exist targets i ,.nd k with the property that x! > xi

and x;, < xk. By the nature of the algorithm it must be that

Vk'pk( - pr)"' > Vp(1 P.O.

We therefore have

.VkPk(- pk) > VkPk(1 - Pk)- > Vipi(1 - Pi)' > VPi(l - (Pi2)

"Note that equality must hold throughout in the expr•tsion 2.1. otherwise the assignment F,

which was assumed to be optimal, could be improved by removing a weapon from target

i and assigning it to target k leading to a contradiction. On the other hand, if equality
holds throughout then, if a weapon is rem.oved fro)., target i and assigned to target k in

* assignment i then the resultant assignment, which we will call i", is ,also optimal. Note

that the assignment i" is closer to assignment r- (i.e. I• - 9"1 > IF- r 1). We can now

repeat the process to get anothcr optimal soiution which is even closer to assignment F than

is i•. After a finite number of repetitions of this process we will obtain the result that Z is

als,) an optimal assignment. N
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One desirable property of the LS algorithm is that several of the descent iterations can

be done in parallel. For example, suppose that two processors P1 and P2 were available

to solve the problem. Assume (for simplicity) that N is even. Let us assign P1 to targets

1 to N/2, and P2 to targets N/2 + 1 to N. Each processor will be allowed to assign M/2

weapons. Starting from any feasible solution, P1 can execute the LS algorithm on its targets

while P2 car' Pyorite it on its targets. Let i denote the solution after P1 and P2 have each

executed the LS algorithm on their targets. Let & denote the corresponding set of marginal

returns

Note that if
m- > N Ž max fA1 ), (2.2)

1<i<NV/2 pi- N/2<j<ýN

and

min ~ max {AJ}, (2.3)
N/2<j5N - P pj 1•i<N/2

then the solution i cannot be improved by a pairwise swap hence it is optimal. If, on the

other hand, the inequality 2.2 does not hold, then the solution can be improved by removing

weapons from one or more of the targets assigned to P1 and adding them to the targets

assigned to P2. Similarly, if inequality 2.3 doe:; not hold, then the solution can be improved

by removing weapons from one or more of the targets assigned to P2 and adding them

to the targets assigned to P1. The algorithm can then be executed on P1 and P2. This

process can be repeated until the inequalities 2.2 and 2.3 both hold. Note that the problem

solved by each processor is essentially half of the size of the original problem. Also note

that each of the processors has to execute the LS algorithm on half of the targets. Instead

of using one processor to do this we can again split the problem (into two subproblems of

N/4 targets each) and use two processors to execute the LS algorithm on the N/2 targets.

In thi!; manner the method can be extended to more than two processors.
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2.3 Network Flow Formulations of Special Cases

In this ection we will formulate special versions of problem 2.1 as Network Flow Opti-

mization problems. By doing this we can make use of several efficient algorithms which are

already available for Network Flow Optimization problems. We will find that this approach

works well for the case of the Static Target-Based problem. However, Network Flow for-
mulations are not possible for the Asset-Based problem or for the dynamic versions of the

Target-Based and Asset-Based problems.

-J---.-
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2.3.1 Weapons with Limited Target Coverage

In the previous section we had assumed that the kill probability is independent of the

weapons. In this section we will assume that for each weapon-target pair the weapon can

either be assigned to the target or it cannot be assigned to the target (i.e. each weapon

can only reach soie of the targets). If it can be assigned to the target then we will assume

that the kill probability of the pair is only dependent on the target. In other words we

axe assuming that the kill probability of a weapon-target pair is either 0 or some target

dependent value pi (i.e Pij E {0,pi}). This assumption is appropriate for the case in which

the weapons are geographically distributed. In such a case each weapon may only be able to

reach a subset of the targets. The kill probability of a weapon on a target which it cannot

reach can be set to zero. If this is done then the weapon will not be assigned to the targets

it cannot reach. Let Ci denote the set of weapons which can reasch target i (i.e the set of

weapons j such that pNj > 0).

Problem 2.3 The Limited Target Coverage problem can be stated as:

Nmin FZVl j i,

N
subject to 'x•u-i, j=1,2,...,j.

Note that the survival probability of each targ.et deopends on thbe siim of th. waapnns ainm.d

for it. It is this fact which makes a network formulation of the problem possible.

We will define a network for this problem as follows. For each weapon and each target

we wili include a node (see figure 2.4). For each weapon-target pair we will include an arc

between these nodes if the kill probability of the pair is non-zero. Denote this set of arcs

by A. Each of the weapon nodes will be a supply node with a supply of 1. We will also

include •, sink node 9. The sink node will have a demand of M. For each target node we will
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WEAPONS NODES TARGET NODES SINK NODE
supply- 1 T.

212

supply=1 @ca, 23 A..demand=3

supply= 1 I

Figure 2.4. Example of the Network Flow representation of a Static Target-Based problem
with 3 weapons and 3 targets. Arcs are drawn between a weapon-target pair only if the kill
probability of the weapon on the target is non-zero. These arcs have a capacity of unity.
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include an arc from the target node to the sink node s. The flow on the arc from weapon

node i to t ..rget node j will be denoted by xij.' ',he flow on the arc from target node j to

the sink node s will be denoted by xj,. All arcs from weapon nodes to target nodes will

have a lower bound of 0 and an upper bound of 1. All arcs from the target nodes to the

sink node s will have a lower bound of 0 and an upper bound of M. There will be no cost

associated with flow on arcs from the weapon nodes to the target nodes. The cost of having

a flow of xj, on the arc from target node j to the sink node will be denoted by Fj,(xj,).

The functions Fj, [0, M] -- R are given by':

F,, (x) =vr(1- p). LJ + (x - LxJ )((1 - p).fxl -(1 - p,)LxJ)], 0 < x < M.

'The orderipg of the subscripts is different to that used in the definition of problem 2.1. We have changed
the ordering to conform to the notation commonly used in graph theory for denoting an ordered arc.

"5The reader can refer to Appendix A for a definition of the notation [1J and rzi.
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Figure 2.5: An example of the arc flow cost, -'(xij), for a target j with value V = i and kill
probability pi = 0.8. Function values for non-integral flows are (,btained by interpolation
of the values for integral flows.
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This function can be described in words as follows. If k E Z+ weapons awe assigned to

target j then the expected surviving value is given by Vj(l -- p,)k. Note that this is the

same as F18(k) which is what we want. However, in the network flow problem the arc flows

xi, are allowed to have real values. The cost function must therefore be defined for real

valued flows. We have done this by letting Fj.(x) for 0 < x < M be the linear interpolation

of the function Fj.(z) defined for x = 0, 1,..., M. For example, consider the case in which

pj = 0.8 and Vj = 1 for some target node j. In figure 2.5 we have plotted the function

Vj(1 -pj)l for xj = 0,1,2.3,4,5 with stars. The linear interpolation of this function is

plotted with the solid line. Therefore the solid line represents the function F1j(Xj,). We

can now define the corresponding network flow optimization problem.

Problem 2.4 The Convewn, Minimum Cost Network Flow problem (CNET) can be stated

as:
N

min F = • Fj,(xi,),ýXJC[0.m ]) j= 1

subject to

(a) X{jl(i,j)EA} = 1 i =1, 2,..., M,

(b) 2 ,l(idj)EA} A1 = , j = 1,2,...,N,

(c) Z:NY X.1a = M

(d) O < Xij < V (i,j) C A

(e) 0 < j<M j= 1,2,...,N.

Note that the weapons are indexed by i while the targets are indexed by j. The objective

function is the sum of the cost of the flow over each arc. Constraint (a) is due to the fact

that the weapon nodes are supply nodes with supply 1. Similarly constraint (c) is due to

the fact that node s is a sink node with demand M. Constraini (b) requires that the total
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flow into a target node must equal the total flow out of it. Constraint (d) is due to capacity

bounds on the arcs from the weapon nodes to tue target nodes. It restricts the number of

*: weapons assigned from a weapon node to a target node to one. Constraint (e) is due to the

capacity bounds on the arcs from the target nodes to the sink node 3.

Note that if the flows are restricted to be integral then the network flow problem is

identical to problem 2.3. This can be seen as follows. Since the flow is integral then,

because of the constraints, exactly one of the arcs out of each weapon node will have a flow

of 1. The target node to which this arc belongs is the target to which this weapon would be

assigned. Therefore, this implies that the flows xij are integral. If the flows zij are integral

then the flows xj, are also integral. However for integral values of zj. the function Fj, is

the same as the expected surviving value of target j which is the function being minimized

in problem 2.3.

Theorem 2.4 An optimal solution to problem 2.4 ezists in which all flows are integral.

Proof: This problem car be transformed into a minimum cost network flow problem with

linear arc costs as follows. Instead of a single arc from each target node to the sink node

we will include M arcs between each target node and the sink node. Each of these arcs will

have a capacity of one. Each of the M arcs from target node j will represent one of the

M linvar segments of the function FjP and will have an arc flow cost eqil;d to the gradient

of the linear segment which it represents. Tbh 9olution of this problem is the same as the

,olution of the problem CNET. Since this is a linear cost problem and the arc capacities,

the supplies and the demands are all integral, then there exists an optimal solution in which

all arc flows are integral (see page 239 of [11] for details). E

We have shown that the solution to the network flow problem 2.4 is integral. Further-

more we have shown that, if tht optimal solution to the network flow problem is integral

then it is optimal for problem 2.1. Therefore, the optimal values of the variables {fi j} of the

network flow problem is optimal tor ,,roblem 2A. Several algorithms have beien proposed
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for solving the network flow problem 2.4. The reader can refer to [11] for the details of some

of these algorithms.

2.3.2 Special Case of at most one Weapon per Target

In this section we will consider problem 2.1 under the additional assumption that each

target can be assigned at most one weapon. We will show that this can be converted into a

Linear Minimum Cost Network Flow Problem. Note that this constraint implicitly assumes

that M < N.

Let u, first note that if ;.i E {0, 1} for j = 2. ... , M, then

M M

IP( - pij),= Ml-j(1- p,,j).
.1=1 3=1

Second note that if we also have E01 xij < 1, then

M M(1-pjj) = Mpjxj

j=1 j=l

Therefore, under the constraint that at most one weapon can be assigned to each target,

problem 2.1 can be simplified.

Problem 2.5 The Linear Cost Network Flow problem (LNET) can be stated as:

N M
max F = Z•ZVp,.,xij,{•o•{0a}} =1 =

subject to

Y-lxij=1,j=12..,M

M

_x. .<1, i= 1,2,...,N.
j=1

The first constraint is due to the fact that each weapon can be assigned to at most one
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target while the second is the additional constraint that each target can be assigned at most

one weapon.

Problem 2.5 is called a Thansportation Problem, which is a special case of the Linear

Minimum Cost Network Flow Problem. If M = N then it is called a Weighted Bipartite

Matching Problem6 . These problems have been well studied and many algorithms are

available for solving them. Details on these algorithms can be found in [13] and [11].

The paper by Orlin [14] also discusses Network Flow formulations for the weapon to target

allocation problem.

We can conclude that, by transforming special cases of the Static Target-Based problem

into Network Flow optimization problems we can efficiently solve these special cases. This

approach works well for the static version of the Target-Based problem. However, the

approach is not easily extendable to more general versions of the weapon to target allocation

problem.

2.4 Bounds on the Optimal Cost

Since the general problem is NP-Complete, heuristics will have to be used to solve it. It is

therefore helpful to have bounds on the optimal cost so that one can have an idea of the

performance of these heuristics. The cost of any feasible solutio., is an upper bound on the

optimal cost so we will concentrate on finding a lower bound.

Recall that one of the constraints of problem 2.1 is that the decision variables must be

integral. Let us call the problem in which this constraint is relaxed, the Relaxed Static

Target-Based Problem. The solution to the Relaxed problem would be the optimal solution

to the problem in which the defense was allowed to fire "fractional" weapons at the targets.

Note that the optimal cost of the Relaxed problem is a lower bound on the optimal cost of

problem 2.1. This is due to the fact that the feasible set of the relaxed problem contains the

feasible set of problem 2.1. The Relaxed problem will be solved to obtain a lower bound on

the optimal cost of 2.1. Note that the Relaxed problem is easier to solve because nonlinear

4The weights for this problem are given by Vip,,.
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programming techniques can be applied.

In the relaxed problem the constraint x0 E {0, 1} is relaxed to xij E [0, 1]. Furthermore,

since xii _> 0 then the constraint T-N1 xi = 1 implies that xij < 1. Therefore the constraint

xij S 1 is not necessary.

Problem 2.8 The Relaxed Static Target-Based problem (RSTB) can be stated as:

N M
min. F = EVi ri(I- pij)",

i=1 j=1

N
subject to Lxi=I, j=1,2,...,M.

s=1

This is a Convex Programming Problem'. Since the problem involves minimizing a convex

function over a compact, convex set then it can be shown that an optimal solution exists.

Furthermore the optimal cost i, finite. In the following discussion this problem will also be

referred to as the Primal problem.

We will now define the dual of the relaxed problem 2.6. The reader can refer to Appendix

A for the definitions of the notation used. It can be shown that the optimal cost of the

dual problem is the same as the optimal cost of the primal problem. Therefore, the dual

problem can be used to obtain the optimal cost for the relaxed problem which will provide

us with a lower bound on the optimal cost of problem 2.1.

Define the matrix X E [0, 1 ]NXM by

[ i = xij.
7See [12] for a definition of a Convex Programming probiem.



CHAPTER 2. THE STATIC TARGET-BASED PROBLEM 44

The Lagrangian function L(X, A), defined for X E WNxM and A E RM for problem 2.6 is

given by

IV M M I
L(X,A) - V II(1 _pi,)x + J-j +- 1,

%=1 J=1
N ( M M / M

= ( Vf(l1- pij) -,+ E ij - Aj. (24)
f j=1 j=1 / =J

The dual functional q :RM is then given by

q(A) = min L(X,A•) (2.5)
X>0

where we have used the notation X > 0 to represent xij _ 0 for i = 1,2,...,N and

j = 1,2... , M. Let us derive an explicit t:pressioa for q(A).

q(A) = minL(X,A)
x>o

= mine •H(1--pijrJO+F,\jX -- EAjN I j=l j=M
M IVTT(

-- Aj+ -min -pi) 1 "ij .

The vector i E ?M is the ith row of the matrix X. Note that the problem has been

simplified nto N subproblems. Let us consider one of these subproblems. The subscript i

will be dropped to simplify the notation. Each subproblem can be written as

M M
nin• (Y) -V fl(1 - pj)i) jj. (2.6)

where g: R4 R is the objective function. Note that g is also dependent on A and is a

conv' function of Y. Define

1... ,2... M V lrL(1 - pj)

and
M

S=p ) .
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Note that §' < 1. The derivative of g along the jth coordinate is given by

d -i = V§ In(1 - pi) + Ai.dx1

We have the following lemma.

Lemma 2.1 If we denote the optimal solution to problem 2.6 by P then r > 1 if and only

ifii

Proof: If F > 1 then, by the definition of r, we know that for j = 1,2,..., M

L.> 1 > 4.
V ln(1 - pj) - -

This implies that --- > 0. If this is the case then, because the function g is strictly convex

then it must be that x* = 0 for j = 1,2,...,M.

Let us now prove the converse. If i= 0 then - 0 for all j. We also have , -1.

Therefore

Vln(1 -pi)+ A+ = V 0ln(I-p,)-+ A1 > 0.

This implies that r > 1. 0

Let us now assume that 0 < r < 1. Suppose that r = -Ak/(Vln(1 - Pk) (i.e the

minimum in the definition of F is achieved for the index k). Since a- > 0 at Xk Xý then

Vlt(r) ln(1 -Pk) + ,k _>. 0,

which implies that

(j ) __ ... .. , = .(2.7)
V m•.t1 - Pk)

By Lemma 2.1 there must exist an index j such that x* > 0 which implies that

V4',(:) ln(1 - pj) 4- Aj = 0.

-AjS-- VlV n(1 - pj) 2(28
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Using the inequalities 2.7 and 2.8 we conclude that O(E*) = r. Therefore we can write

,)= 17

SII(i -- pjy; = r

M

x!In(l.-- pj) = InrF
M

' =* ., = -VOInrF.
j=1

Finally we have:

g(r) vr(1 - Inr).

If we denote the optimal value of problem 2.6 by g' then

v l()(1 - Inr(A)) for 0 < I(A) < 1
g (A) = l )for r(A) 1

where

1A,2 ..... (Mvl,(1i - Pj)"

The result in 2.9 can now be used to write the dual functional explicitly as

N M
q(,\) - gý( \ (2.10)

p =1 1=1

where
f Viri(A)(1 -n ri(A)) for 0 < Fi(A) < I

Vi for ri,(A)> I

and Fi(A) is defined as

rj(A)= miln (-A }
The dual of problem 2.6 is given by

max q(A). (2.11)A_>O

Note that this is an unconstrained concave maximization problem. It can be shown that

for Convex Programming problems

F" =q(A') maxq(A).
A>O
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where F* is the optimal cost of the primal problem. Therefore F* is equal to the optimal

cost of the dual problem.

The dual functional is concave. Unfortunately it is not differentiable everywhere. How-

ever, there are methods, such as subgradient methods, for maximizing non-differentiable

concave functions. The advantage in solving the dual problem instead of the primal prob-

lem is that the number of variables in the dual problem is M, while the number in the

primal problem is NM. We theiefore expect that algorithms for solving the dual problem

will be faster than those for the primal problem.

There are three general methods that can be used to solve problem 2.6 Direct Primal

Methods, Primal-Dual Methods and Dwect Dual Methods. Direct Primal methods produce

algorithms which solve for the decision variables xij directly. Algorithms in this class include

Feasible Direction Algorithms, Manifold Suboptimization Methods and Projected Newton

Methods (see [12]). The computation time depends on the number of variables, which in

this case is NM. For the class of problems that we are interested in, this number will

be large so that these algorithms are, in general, impractical. Priuial-Dual methods solve

both the primal problem 2.6 and the dual problem 2.11 simultaneously. This class includes

Relaxation Methods which are iterative in nature. One advantage of this method is that

the cost of any feasible solution to the dual problem is a lower bound to the optimal cost of

the primal problem so that if the iterations are stopped prematurely and the closest primal

feasible solution is found, one can obtain a lower bou nd and check the quality of the solution.

DWect dual methods solve the dual problem 2.11. As we have seen above, the optimal cost

for this problem is also the optimal cost for the primal problem 2.6. The number of dual

variaVles equals the number of constraints which, for this problem is M. Since this is much

less than the number of primal variables one would expect faster computation time than

direct primal methods. These methods however suffer from the fact that the dual functional

is non-differentiable.

The best method to use for finding a lower bound on the optimal cost for problem 2.2

will depend on the class of problems to be solved. For large-scale ploblems, the direct dual
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methods will probably be more efficient than direct primal methods. The paper by Pugh

[15] considers the use of Lagrange Multiplier methods for the solution of weapon to target

allocation problems.

2.5 Concluding Remarks

In this chapter we have presented a summary of previous work done on the Static Target-

Based WTA problem. We also presented a new algorithm, the Local Search algorithm, for

solving the problem under the additional assumption of weapon independent kill probabil-

ities.

We considered the special case in which the kill probability of a weapon-target pair can

either be 0 (meaning that the weapon cannot be assigned to the target) or, if it i.; non-zero,

it depends only on the target. In other words each weapon can only reach a subset of the

targets. This problem can be solved by first converting it to a Minimum Cost Network Flow

Problem with Convex Arc Costs and then using algorithms for that problem.

We next considered the special case with the additional constraint that each target

can be assigned at most one weapon. This problem can be shown to be equivalent to a

Transportation Problem. Many polynomial time algorithms are available for solving the

Transportation Problem.

Note that these problems will have to be solved in real time since the engagement

time may be short. One method for solving these problems quickly is to solve them on

parallel computers. Therefore, research in parallel algorithms for the problem is necessary.

Furthermore, the weapons will be geographically distributed. This suggests the use of

distributed computation. This is another area of research that should be investigated.



Chapter 3

The Dynamic Target-Based
Problem

In this chapter we will consider the dynamic version of the Target-Based WrA Problem.
This problem consists of a number of time stages. The defense is allowed to observe the

outcomes of all engagements of the previous time stage before assigning and commiting

weapons for the present stage. This is called a "shoot-look-shoot-..." strategy since the

defense is alternating between shooting its weapons and observing (looking) at the outcomes.

Note that in a real conflict it is not possible to divide time into distinct stages as we have

done. This is because the offense's weapons do not all arrive simultaneously and, even if

they did, the time of each weapon-target engagement will be different. However, without

the assumption of distinct time stages, the complexity of the problem is to great to obtain

any analytical results and hence any insights.

In section 3.1 we will give a mathematical definition of the problri,. In section 3.2

we will consider the effect of stage dependent (but weapon and target independent) kill

probabilities on the optimal assignment. We will assume identical targets and provide an

analytical solution in the limit as the number of targets goes to infinity. We will find that

if the weapon-target ratio is kept fixed, then, in the limit as the number of targets goes to

infinity, the problem can be considered as a deterministic one in which the number of targets

in each stage is equal to the expected number of targets which sukrvive the previous stage.

This simplifies the analysis since a deterministic problem is much easier to solve. In section

49
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3.3 we will consider the special case of identical targets and a uniform kill probability for all

weapon-target pairs and all stages. In this section we will provide analytical results for the

case of two targets as well as for the limit as the number of targets goes to infinity. These

results will then be used to analytically compare dynamic and static strategies. We will

obtain the very interesting result that roughly half as many weapons are required for the

dynamic strategy to obta: dhe same performance as that of the static strategy. Section 1.4

contains the special case of weapon independent kill probabilities. We will demonstrate that

this problem is difficult because multiple minima may exist. We will provide an algorithm

for finding one of these local minima. An optimal algorithm for the case of two targets will

also be presented. Finally in section 3.5 we will provide some concluding remarks.

3.1 Problem Definition

In the dynamic problem the time duration of the offense's attack is divided into a number

of time segments. Each segment is of sufficient length to allow the defense to use a subset of

its weapons and observe (perfectly) the outcomes of all of the engagements of the weapons.

With the feedback of this information the defense can make better use of its weapons, since

it will no longer engage targets which have already been destroyed. Thus we are dealing

with so-called "shoot-look-shoot-..." strategies.

We assume that in the initial stage the defense chooses a subset of its weapons and

assigns them to targets. These weapons are then committed simultaneously. In the second

stage the outcomes (i.e. the survival or destruction of each engaged target) of all of the

engagements of' the weapons committed in the first stage are observed. Based on this

observation, the defense chooses a subset of the remaining weapons and assigns them to

the targets which survived the stage I engagements. In the third stage the outcomes of

the engagements of the weapons committed in stage two are observed. Based on this

observation, a subset of the remaining weapons is chosen and assigned to the set of surviving

targets. This process is repeated for all time stages. In each stage the weapons are chosen

.d ;1( gnI d with the objective of mininiring the total expected value of the surviving

I .. . .. . . .. . . .. . . . . . . . . . . . . .
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targets at the end of the final stage.

Note that in each stage the problem is resolved based on the outcomes of the previous

stage. This implies that in each stage one is interested in obtaining (a) the subset of weapons

which are to be fired in that stage and (b) the optimal assignment of these weapons to

targets. Note that in computing the optimal assignment for the present stage one must

assume that in all subsequent stages an optimal assignment will be used. If this is not done

then the expected cost for the problem could be improved by doing so. This is known as the

Principle of Optimality in dynamic programming [16]. We will therefore implicitly assume

that optimal assignments will be used in all subsequent stages.

Note that the only information required to compute the optimal assignments in a stage

ic the set of surviving targets, the set of remaining weapons and the number of stages left.

All other information of previous stages is not relnvant. Therefore at each stage the problem

can be restated as one in which the present stage is the first stage of the restated problem.

The initial set of targets for this problem is the set of surviving targets and the initial set of

weapons is the set of remaining weapons. In other words the problem to be solved in each

stage has the same form as the statement of the problem for stage 1. Therefore, although

we will only consider the T-stage problem and solve for the optimal assignments of the first

stage, the same method can be used to solve for the optimal assignments of the remaining

stages.

In our notation we will index the parameters in each stage with the stage number.

Therefore for a T-stage problem the parameters in stage one will have an index of 1 while" A- ... . le- '11-1 A g Will li -V . .. . ... . . .
thlUbos of th fll sg I ha1eindex of T • The notation, which is basically the. •satei

as for the static problem except for the stage index, is as follows:

N de1 the number of targets (offense weapons),

M ef the number of defense weapons,

T = the number of time stages,

Vi = the value of target i, i = 1,2,. .. , N,

dii (t)l = the kill probability of weapon j o, target i in stage f,
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i= 1,2,...,N, j = 1,2,...,M,

qij(t)= 1 - pij(t), the corresponding survival probability.

* The decision variables will be denoted by:

xij f 1 if weapon i is assigned to target i in stage I

= 0 otherwise.

The target state of the system in stage 2 will be defined as the set of targets which survive

stage 1. This state will t denoted by an N-dimensional binary vector it e {0, 1}N and

represented by

= 1 if target i survives stage 1,
0 if target i is destroyed in stage 1.

"The weapon state of the system in stage 2 will be defined as the set of available weapons

after stage 1. This state will be denoted by an M-dimensional binary vector t7 E {0, 1}M

and represented by {1 if weapon j wa not used in stage i,

wjt if weapon j was used in stage I 1

Given a first stage assigi! ,ient, {xjj}, the target state at the start of the second stage

is an N-dimensional random vector. The probabilihy that ui is 1 is the probability that

target i survives the first stage. The probability that ui is 0 is the probability that target i

is destroyed in the first stage. The distribution of the random variable ui is therefore given

by:
M

Pr[ui "- k] k Ik•(, - p.i(l)) XI, 1[ -- k] - - pi(1))3 '' , (3.1)

j= 1  j=1

for k =o,1, i= 1,2,...,ZN.

Equation 3.1 will be called the target state evolution of the system.

The weapon state also evolves with time. This evolution is deterministic and depends

on the assignmente made in the first stage. The evolution is given by:

N
wi -- 1-E_•xij, j = 1, 2,.. ., M. (3.29)

i=1

This simply says that weapon j is available in the second stage if and only if it is not used

in the first stage. Equation 3.2 will be called the weapon state evolution of the system.
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We will let F;(f, 0i) denote the optimal cost of a T - I stage problem with initial target

state is and initial weapon state Z. 1lote that this problem will be defined in terms of

optimal costs for T - 2-stage problems, etc. Eventually the (T - (T - 1) or single stage

probiem will be defined in terms of optimal costs for 0-stage problems. The optimal cost of

a 0-stage problem will be defined as:

N
/"•+, (g, tý) --" lu (3.3)

i=1

In other words, the cost is simply the total value of the targets which survived the final

stage.

Problem 3.1 The Dynamic Target-Based problem (DTB) can be stated as:

minFj= • PrF1= ]F;(,tu)

subject to xj E {0,1}, i= 1,2,...,N j- 1,2,...,M,

N

with w = 1 - z.

The objective function is the sum over all possible stage 2 target states of the probability of

occurrence of that state times the optimal cost given that state. The probability distribution

of the target state was given in 3.1. Note that the distribution of the stage 2 target state

and the stage 2 weapon state both depend on the first stag, assignment. The first constraint

restricts each weapon to be assigned at most once in the first stage. The second constraint

is due to the weapon state evolution.

This problem is considerably more difficult than the static one. This can be illustrated

by attempting to use a straightforward dynamic programming approach to the problem.

Let us consider a two stage problem. The number of possible weapon subsets that can be

chosen in the first stage is 2 M. If in, weapons are us 'd in stage 1 the number of possible
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assignments that must he checked is Nm '. If N of the N targets are engaged in the first

stage the number of possible outcomes is 2N*. If Nr of the N targets survive stage 1 and m 2

weapons are available in stage 2 then the liumber of assignments thai. .must be checked to

obtain the optimal cost for this outcome is Nm2. These numbers chow the enormous number

of computations that will be required if a straightforward dynamaic programming approach

is used. Note that to simply evaluate the expected value of a first stage assignment requires

a tremendous computational effort.

3.2 Unit Valued Targets and Stage Dependent Kill Proba-
bilities

In this section we will study the effect of stage dependent kill probabilitie.', p(t) on the

optimal assignment. We will assume that the targets all have a value of unity and that the

kill probabilities p(t) are independent of the weapons and the targets. We were not able to

obtain an analytical solution to this problem even for the case of two targets. However, we

were able to obtain results for the limiting case, as the number of targets goes to infinity.

We will first present some properties of the optimal solution.

Theorem 3.1 Consider the dynamic version of the Target-Based problem in which there

are T stageq, N uit-valued targets, stage dependent kill probabilities p(t), and M weapons.

The optimal strategy has the property that the weapons to be used at each stage aie spread

as evenly as possible among the surviving targets.

Proof: The proof is by contradiction. '1o simplify the notation we will denote the kill

probability for the first stage by p (instead of p( )) and the survival probability by q I -p.

Similarly we will denote the optimal number of weapons assigned to tart A i in the first.

stage by zi. Let us assume that assignment F is optimal but does not have the property

that the weapons are spread evenly among the targets. For convenience let us assume that

targets 1 and 2 are such that x, > x2 + 1. The remaining assignments 3, X4,. .. ,XN can

be arbitrary. Denote the exprcted cost for this optimal assignment by F*. We have

r'° +x2L+ 2 i +[q"(1 - qZ2) + q9(1 - qe )]DI + (1- qz)(1 - o (3.4)
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where

"D dlfthe expected cost given that targets 1 and 2 are destroyed in stage 1,

SD, dfthe expected cost given that either target 1 or target 2 survives stage 1,

D 2 •fthe expected cost given that targets 1 and 2 both survive stage 1.

Now consider the assignment in which a single weapon is removed from target 1 and

reassigned to target 2. Denote the expected cost for this assignment by F. We have

F D2 + [qx1-1(1 - q2)- + q3+l(1(1.qz' 1)]Di+(1 - qx -1)(1 -. qx'')Do (3.5)

where Do, D1 and D2 are as defined above. We therefore have

F*-F = (1- q)(q -q')DI + (1 - q)(q-l-. qx2)Do

= (1 q)(q' 2 - q"1-l)(Di - Do). (3.6)

By our assumption that x, > x2 + 1, we have q'2 > q'i-1. Also, since D1 is the expected

cost given that either target 1 or target 2 survives and D0 is the cost if both are destroyed

then Di > Do. This implies that the expression 3.6 is positive which implies that F* > F

which contradicts our assumption that the assignment with expected cost F* was optimal. U

The above result simplifies the problem to be solved since we can use the number of

weapons to be uset. each stage, rmt, as the decision variable and optimize over this variable.

Given the optimal values of mt, the optimal assignment can be obtained by spreading these

weapons evenly among the targets. In the case of T = 2 the resulting problem is a one

dimensional opti ization problem since mr + m2 = M. Intutively we would expect the

eXpecteud COst, t bOe a uLuýIuuda- lunction with respect to the number of weapons used in

stage 1. However, this is not the case as we see. in the following two-stage example,

Let us choose ml, the number of first stage weapons, as the independent variable. We

will write the expected value if m1 weapons are used in stage I and Al - ml weapons

are used in stage 2 by Fi(mi). The optimal solution can then be obtained by minimizing

F1 (in,) over the set {O,1,. M}.

'See definitiori A.5.
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Figure 3.1: A two-fitage example in which the expected cost as a function of the number of
first stage weapons, Fi(mi), has multiple local minima.

IMoog
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Figure 3.2: The log of the function F1 (ml) for the relaxed problem (solid) as well as for the
true problem (dashed) vs. the number of first stage weapons, ml.

If F1(ml) was a unimodal function of mt then the above minimization could be done

efficiently by using a Iccal search algorithm. Unfortunately, this is not the case as can be

seen in the following example. Consider the problem in which T = 2, M = 14, N = 3 and

p(l) = p(2) = 0.9. In Figure 3.1 we have plotted log Fi(mm) versus ml. We used alog scale

because the variations near the global minima are so small, that with a linear scale the

function "appe&rs" to have a single minimum. This suggests that for all practical purposes

any of the local minima will suffice. A local minimum can easily be obtain d by a local

search algorithm (i.e. repeatedly increase or decrease rn1 if doing so decreases the cost until

any change in 'ma results in an increase in the cost.

FI
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The function FI(ml) is not unimodal because of the restriction that weapons must

be assigned in integral quantities. Let us consider the problem in which the integrality

constraint is relaxed. In other words we will assume that the survival probability of each

target in stage one is given by (1 - p)!'. Also if k targets survive stage one we will assume

that the expected cost in stage two is given by k(I - p) k . In flgui' 3.2 we have plotted

the expected cost for this relaxed problem (the solid curve) versus the number of weapons

used in stage one. We also plotted the function for the case of the true problem, F1(ml),

(the dashed curve). Note that the function of the relaxed problem is a lower bound for

the function of the true problem. This is expected since the set of feasible solutions of the

relaxer problem includes the set of feasible solutions of the true problem. Note that the

function for the relaxed problem is unimodal. Also note that the optimal value of m, is

the samne for both functions. This suggests that the relaxed problem can be used to find a

near-optimal vaue for mt. There are two advantages to using the relaxed problem. First

of all, it is easier to solve because of the relaxation of the Mntegral constraints. Secondly, if

the function is unimodal, as it is for this case, then the global optimal can be found v ith

the use of a local search algorithm.

Our next theorem concerns the case in which the number of weapons is less than the

number of targets;. Our intuition tells us that a dynamic allocation should not perform any

better than a static one. This is indeed the case.

Theorem 3.2 If M < N, then the optimal strategy is to assign all of the weapons in the

stage with the highest kill probability.

Proof: This is of course true for the one stage problem. Let us assume that it is true

for the T - 1 stage problem. Now consider the T-stage problem. Suppose we assign mi

weapons in th, first stage. We have m, < M < N. By the induction asst,.mption, all of the

* remaining weapons will be assigned in one of the following stages, the stage with maximum

kill probability. This means that the problem can be reduced to a two stage problem. We
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will therei )re assume that T = 2. The !ost for this problem is given by

in'

F1(m1 ) = 'b(j;mi,p(1))[(M - mi)(I -p(2))+ j + N M)]
1=1

= (M - mi)(1 - p(2 )) + mi (1 - p(l)) + N - M

= N - Mp(2)+m[p(2) p(l)].

fherefore if p(2) > p(l), then mr = 0; while i p(2) < p(l), then mt = M. In the case

p(l) = p(2), both solutions are optimal. Therefore for the T-stage problem all weapons are

assigned in the stage with the maximum kill probability. a

The above theorem is not particularly enlightening. However, it allows us to concentrate

on the cases M > N. Our next result pertains to these cases. It states that, if M > N and

p(t) >_ p(t + 1) then the optimal assignment has the property 7t > N. In other words the

optimal number of weapons to be used in the first stage is at least as big as the number of

targets.

Theorem 3.3 If M > N, and p(t) > p(t + 1) for t = 1,2,...,T- 1, then 7t > N.

Proof: Note that the theorem is true for the case T = 1. Let us now assume that it is true

for the T- 1-stage problem ead show that it holds for the T-stage problem. We will am:sumn

that the weapons to be used in a stage are spread evenly among the surviving targets.

The following notation will be used. Let FI(ml) denote the expected cost given that

m, weapons are used in stage I and that an optimal strategy is used for the remaining

T - 1 stages. Let J 2(in, k) denote the optimal cost of the T - 1 stage problem given that m

weapons are available and that k targets survive stage 1. Assume that m1 = fn < N. Note

that
ft

FI(in-) =•fb(k; fnq(l))F2(M - fn, N - fit + k)

k=O

By our assumptions, at least one target survives stage 1. Also at least one weapon is

assigned in stage 2. Choose any target i to which at least one weapon is assigned in stage
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2. Let x be the number of weapons assigned to this target. Denote one of these weapons

as weapon r. We have:

F.(M - -fi, N - en + k) = q(2)(Cost given that weapon r hits target) +

p(2)(Cost given that weapon r misses target).

The cost given that the weapon does not destroy the target is the same as the optimal cost

for the case with M -- fn - I weapons. The cost given that the weapon destroys the target is

the same as the optimal cost for the case of N - fn + k - 1 targets and Al - f - x weapons.

Therefore

F2(A. -- f, N - h + k) = q(2),F 2(M- r- 1,N- fn-+-k)

+p(2)F 2(M - fn - x, N - ffý + k - 1).

The fact that x > 1 can now be used to obtain

F2(M - it,N - 7+nk) + F(M - fn- l,N - fa + k)

+p(2)[F2(M - ,h -- 1, N - m. + k - 1)

-F2 (M -- rn- - 1, N -- ,i + k.)]

We now use the fact that p(l) Ž p(2) to obtain

F2(M - fia,N - t+ k) >_Fý(M - fn -1, N- fn +k) (3.7)

+p(1)[F2(M -. in - 1, N -- fit + k - 1)

-F2(M - f-n -- 1, N - fn 4. k)]

Next note that by using an argument similar to that above we can show that

FI(ir + 1) = lb(k;t,,q(1)){F 2(M - ,- 1,N -lh ik) (3.8)
k=O
+p(1)[F 2(M - i - 1, N - ?it + k - 1.) - F2(M - t-- 1,N -.Nif + k)]

We therefore have
vh

F, (tt) = _b(k; fn, q(1)) F2 (M - fn,N - fi + k)

k.ý-0
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Substituting the inequality we obtained in 3.7 we have

F,~• N" •.b(k;fi, q(1)){F2(M - fn - 1,YN- rn+ k) (3.9)

k=o
-+-p(1)[F2(M - fn - 1, N - fn + k - 1) - F2(M - fn - 1, N -- fit + k)]'

Now using the result obtained in 3.8 we have

Fi(fn) >_ F,(fn + 1)

This means that the expected cost can be decreased by increasing the number of weapons

used in the first stage. This process can be repeated to conclude that the optimal number

of weapons to be used in the first stage must be greater than or equal to the number of

targets. U

The next theorem concerns the case in which the number of stages is large. One would

expect that if this is the case then at each stage one should assign a single weapon to each

surviving target at that stage. If two weapons are assigned to a target at a stage and one

of them destroys the target then the other weapon has essentially been wasted. This result

is given in the following theorem.

Theorem 3.4 If T > 1 + -N, M > N andp(t) =pfort = 1,...,T then .).',= N.

Proof: Assume that m• > N. This means that there exists at least one target i with x' > I.

Suppose that we increase the number of stages by one. This additional stage will be added

at the begiining and we will assign mT weapons over two stages (instead of one). This

assignment will be as follows. In stage 1 a single weapon 1, r target will be assigned. In the

second stage x* - 1 weapons will be assigned to target i whether or not it is destroyed in

stage one (i.e use an open loop strategy). Note that the expected cost of this strategy is the

same as for the orginal T-stage problem. Therefore, if we allow the weapons in stage 2 to be

assigned to any of the surviving targets then the expected cost can only decrease. In other

words, by increasing the number of stages by one we can decrease the cost by using at most
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__ p( 2 )=0. 1 p(2)=0. 3  p(2)=0.5 p(2)=0. 7  p(2)=0.9
_E-(_) = 0.1. 10 0 0 0 0

p(1) = 0.3 20 10 0 0 0
p(1) = 0.5 20 16 10 10 0
p(1) = 0.7 20 18 10 10 10

Tb p(1)=0. 9  20 20 105 10

Table 3.1: Optimal values of first-stage weapons, nil, for different combinations of stage
dependent kill probabilities.

p(2)=O.l p(2 )=0.3 p(2)=0.5 p(23)=O.7 j p(=0.9
p(l) = 0.1 8.0100 4.9000 2.5000 0.9000 0.1000
p(l) = 0.3 4.9000 4.2784 2.5000 0.9000 0.1000

Sp(l) = 0.5 2.5000 2.3975 1.4334 0.6496 0.1000
p( 1) = 0.7 0.9000 0.8924 1 0.4808 0.1626 0.0238
p() - 0.9 0.1000 =0.1000 0.0410 0.0079 0.0005

Table 3.2: Optimal costs for various combinations of stage dependent. kill probabilities.

N weapons in the first stage. Therefore the optimal solution must have this property. From

theorem 3.3 we know that at each stage at least one weapon should be assigned to each

target. These two results imply that in the optimal solution exactly one weapon should be

assigned to each target in stage one.

Note that the maximum possible number of stages is obtained in the case in which 2

targets survive stage one and they survive all futuxe stages. In this case the number of

stages in which weapons are available is given by 1 + M_2. Hence if T is greater thaii this

number the problem can be considered as having an infinite number of stages. a

3.2.1 Numerical Results

Since there appears to be no analytical solution to the problem under the assumption of

unit-valued targets and stage dependent kill probabilities, we numerically computed optimal

solutions for a simple example. We computed the optimal solutions for the case of M = 20

weapons, N = 10 unit-valued targets arnd T = 2 stages for various kill probabilities. If we

denote the kill probability for the first stage by p(l) and that for the second stage by p(2),

then our solutions are for- the cases in which p(l) = .1,.3,.5,.7,.9, p(2) = .1,.3,.5,.7,.9.
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Table 3.1 contains the optimal numbers of weapons to be used in the first stage (i.e. mi).

Note that when p( 2 )/p(l) is large then m* is small while when p( 2 )/p(1) is small mr is

large. In certain ranges we find that mi is very sensitive to p(2) and p(l). For example,

when the second-stage kill probability is p(2) = 0.9, then a change in, the first-stage kill

probability p(l) from 0.5 to 0.7 results in the optimal number of first-stage weapons, ml,

changing from 0 to 10 which means a change from a static to a dynamic strategy.

Table 3.2 contains the optimal costs for the problems. Note that, given a choice between

using the mnore effective weapons in the first or second stage, it is always better to use them

in the first stage. For example, if p(2) = 0.9 and p(l) = 0.7, the optimal cost is 0.0238;

while if p(2) = 0.7 and p(l) = 0.9, the optimal cost is 0.0079. Another way of looking at

this property is the following. We computed (approximately) the derivative of the optimal

cost with respect to p(2) at the point p(2) = 0.8,p(J) - 0.8 to be -0.22. The derivative

with respect to p(l) at the same point is approximately -0.33. This implies that, given the

choice of improving the kill probabilities of either the weapons used in the first stage or the

weapons used in the second stage, one should improve the kill probabilities of the weapons

for the first stage.

3.2.2 The Limit of an Infinite Number of Targets

In this section we will consider what happens for very large numbers of unit-valued targets,

N. We will keep the ratio of weapons to targets fixed and solve the problem in the limit as

the number of targets goes to infinity. We will find that, in the limit, the problem can be

considered as a deterministic one in which the number of targets in a stage is the expected

number of targets which survive the previous stage.

Let its introduce the variable Kt = %F. This is the number of weapons reserved for stage

t per initial number of targets. We will also define the vector ki E R' for 1 < t < 7' by

g [Nt;, Kt+i , ..., KT]T.

Note that the values of K.t may not be optimal for the problem. We will address the

question of finding optimal values for Kj in subsection 3.2.3. By theorem 3.1 we know that
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the weapons to be used in each stage should be spread evenly among the surviving targets.

* The expected cost of the T-stage problem with N targets and in which mt = KtN weapons

* are used in stage t will be denoted by F1(N, 91 ). Let a denote the expected fraction, of the

*. initial number of targets, which survive stage 1 i.e.

* ,a = [1 - (Ki - LriJ)p(1)](1 - PO(1))"'j. (3.10)

Note that a is independent of N. Consider the case of the static problem (i.e. T = 1). We

have
N a = [1 - (ri - LIclJ)p(l)]( - p(1))Lxhi.

! ~N'

Taking the limit as N goes to infinity on both sides we get

lina F1(N, Kj) _ [1- (rl - [KlJ)p(2)](1 - p( 2 ))L-iJ - L. (3.11)
N-oo N

* In other words, for the static problem, if the weapon to target ratio is kept fixed then the

expected fraction of targets which survive is tlv same for all values of N. This will also be

the value in the limit as the uumber of targets goes to infinity. We will now show how the

limit of this ratio can be obtained for more than a single stage. The limit for the T-stage

problem will be obtained in terms of the limit for the T - 1 stage problem, etc. Since the

limit for the case 7' = 1 (the static problem) is well defined then the limit for the two-stagc

problem is well defined etc. The T-stage limit is therefore well defined. The main result

will now be pneiented.

Thlorem 3.5 Consider the T-stage problem with N unit valued targets, M = nN weapons

and stage dependent kill probabilities p(t). Assume that the number of weapons to be used

in stage t is given by mt = KtN, where, Ot [0, c] is a fixed constant which may be different

for each stage. We then have that

1_irn (N ,•I) 12(N , iZ2/ a)
N--0o N - N-ci N (3.12'

where a is givcn by equation 3.10.
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Proof: Let N2 represent the number of targets which survive stage 1. N2 is a random

variable, If r 1 E R then it is a binomial random variable; otherwise, its distribution can be

obtained by the convolution of two binomial distributions. The mean and variance of this

distribution is given by:

E[N2 ] = N2 = aN,

Var[N 2] --- a' = O3N,

where

/= ,?•,I)L•'J[(1 - (Ki - LrlJ))(1 - q(1)["2J) + (Ki - L[,J)q(1)(1 - q(i)LF,1]+1)]

Note that / is independent of N. For any i > 0 we have

F1(N,9i) = Pr(1N2 - N•2 -Ž IN)E[F2(N2,1 2)IIN2 - N2 ! Ž-/sN)]

+ Pr(I I 2 - N2 1 < pN)E[F2(N 2,9 2)IIN2 -- N2 1 < ptN)]. (3.13)

By Chebyshev's Inequality we know that

a2
Pr(IN2 - N2 1 < pN) -> 1 (- N)- = 1- 2N" (3.14)

Since F 2 (N 2 , 92) is a monotonically increasing function of N2 then

E[F 2(N2,, 2 )jIN2 - N2 1 < pN] • F2( 2 + pN, R.2), (3.15)

and

E(F2 (N 2 ,, 2 )!IN 2 - N21 < pN] Ž F2 (N(2 - pN, ,2), (3.16)

and also

E[F2(N 2, W2 )IN 2 - X21 Ž> pN] < F2(N, 9,), (3.17)

Using 3.14 3.15, 3.16 and 3.17 in 3.13 we obtain

(1.- )-3 )F2(N22- pN,RK2 )< FI(N,9) < )-3 [F2(N,9 2 )]1+F2(N2  pNi 2) (3.18)
'"2 N 2N

Dividing by N and taking the limit as N goes to infinity we obtain

ira F2(12 -AN, 2) ir Fi(N, )< Tim

N-00 N -N N-oo N

I
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Using the fact that N2 - aN and taking 14 arbitrarily close to 0 we obtain

lim F(N,P61 = lim F2(aN, g2 )
N-oc N N-oo N

Using a change of variables we finally obtain

S (N,1)-a limF2(N,2/a)

N--* N N-ao N

This completes the proof. a

Note that the theorem gives the limit of the T-stage problem in terms of the limit for a

(T - 1)-stage problem. The latter can be expressed in terms of the limit of a (T - 2)-stage

problem etc. The limit for the case T = 1 is given in equation 3.11.

This limit provides us with a lower bound for finite values of N. This result is given in

the next theorem.

Theorem 3.6 Consider the T-stage problem with iV urit vulned targets, M = rN weapons

and stage dependent kill probabilities p(t). Assurme that the number of weapons to be used

in s4age t is given by mi = ,cN, where xt E [0, rK] is a fixed constant which may be different

for each stage. We tL -n have that

Fi(N, 1) >N lim F1(N, 1  (3.19)N-co N

Proof: Let k E R, be any positive integer. Consider the problem with kN targets and in

which mt = kxt N weapons are used in stage t. Let F1(kN, g1 ) denote the optimal cost for

this problem. A sub-optimal solution for this problem is the following. Split the problem

into k subproblems. Each of these subproblems has N targets and uses mt = rtN weapons

in each stage. The optimal cost for the problem under this restriction is given by kF, (N, 91).

Since this solution is suboptimal we have-

F1 (kN, 91) <5 kri(N, WI).
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Dividing both sides by kN and taking the limit as k goes to infinity we have

F,(N, 91 ) > li F1(kN, 91 ) = im F1(N, R)
N k--oo kN *-Co N

The result 3.19 now follows. 0

Theorem 3.6 provides us with a lower bound on the optimal cost for the problem with

finite values of N. Theorem 3.5 is more easily understood if we look at some examples.

Example 1

Suppose that r. = 2,K 1 = 0.5,K2 = 1.5 and p = 0.6. In other words the defense has 2N

weapons, N/2 weapons are used in stage 1 and the remainder are used in stage 2. The

expected fraction of targets which survive stage 1 is given by

a P[(1 - p) + 1] - 0.7.
2

Therefore the expected value in stage 2 given that the expected number of targets survive

stage 1 is given by:

F2a,,,, 2 ) = F2(0.7,1.5)= [(1 - p)3 + 6(1 -p)']/10 = 0.1024

Note that we had to scale the number of weapons and the number of targets by a factor of

10 so that there are an integral number of each. If we now use the theorem we obtain:

ii Fi(N,[.5, 1.51) =0.1024.
N--o N

In words this says the following. For very large N, if 25% of the weapons a.re used in stage I

then approximately 10% of the targets will survive both stages. For comparison, if a static

strategy is used then 16% of the targets will survive. If we consider the case of two targets,

N = 2, 'hen 13.12% of the targets will survive both stages. Note that even for the case of

N = 2 the limiting value provides a good approximation. This approximation gets better

as N increases.
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Exarmpl. 2

Suppose that r = 2,r. = 1,x 2 = l and p = 1 - j for some k E N. In this case a (1 -p)

so that

2(a, x)= F2((1 - p), I) =( k

Therefore

l ir a I j( N , f 1 , 1 ] ) _ ( I -- k = ( 1 - .p ) 1 ,.

N--.o N k

Let us now consider the case of a three-stage problem.

E ample 3

Consider the 3 stage problem with r = ,l= N2 = K3 1, and p = 0.5. In the limit the

expected fraction of targets which survive stage 1 is 1. The expected fraction which survive

stage 2 is 1 and the expected fraction which survives stage 3 is -2+r. Therefore.

F1 (N, [1,1,1]) 1 _
lim-21.N-co N

Let us now consider a case with stage dependent kill probabilities.

Example 4

Suppose that ,j = [1.5, 1,.5] a: d that p(l) = .6 ,p( 2 ) = .5,p(3) = .4. The expected fraction

of targets which survive stage 1 is given by

= 0.5[(1 - p(1)) + (I - p(1))2 ] = 0.28.

The expected fraction which survives stage 2 is the solution to a static problem with 0.28

targets and 1 weapon. To find the limit for this problem we find the cost for the case of 7

targets and 25 weapons (i.e multiply by . ) and divide the c:st by 25. We obtain

= [4(1 -- p(1))') - 3(1 - p(1)) 3]/25 = 0.025.

The expected fraction which survives the final stage is the solution to a :;tatic problem with

0.025 targets and .5 weapons. Multiplying the parameters by 46 etc. we obtain

a = (1 - p(2))2'ý/40 9.1 x 10-7.
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Therefore in the limit as the number of targets goes to infinity, the expected fraction of the

"initia. number of targets which survives all stages is 9.1 x 10-".

Theorem 3.5 is important because it allows us to compute approximate costs for the

case of large N. We will show that this approximation is very good if N > 100. Theorem

3.6 says that this limit provides a lower bound on the cost for finite values of N.

In words theorem 3.5 says the following. Let us suppose that the number of weapons

reserved for a stage is linearly dependent on the initial number of targets N. Therefore,

as we increase the number of targets, the number of weapons in each stage will increase at

the same rate. As we increase the number of targets, the expected number of targets which

survive the final stage will also increase. Let us instead consider the ratio of the expected

number of surviving targets and the initial number of targets. We will refer to this as

the expected surviving fraction of each target since we can obtain the expected number of

surviving targets by multiplying this ratio by N. We can compute this ratio in the limit of an
infinite numbur of targets N by solving a, related deterministic problem. This deterministic

problem is obtained as follows. Let us suppose that at each stage the number of surviving

targets is equal to the expected number of surviving targets. Pick the initial number of

target N so that the exepcted number of surviving targets at each stage is integral. Using

this value of N we evaluate the expected surviving number of targets at the end of the final

stage of the deterministic problem in which, at each stage the expected number of surviving

targets survive the previous stage. The ratio of the expected number of surviving targets

for this problem and the initial number of targets N is the same as the ratio, in the limit

as N goes to infinity, of the expected number of surviving targets and the initial number

of targets. Note that the former ratio is obtained by solving a deterministic problem while

the latter ratio must be obtained by solving a stochastic problem for an infinite number of

targets. This limit provides a lowf-, bound for the ratio for finite values of N. Furthermore,

it provides an approximate answer for large values cf N. An interesting question is how
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Figure 3.3: The ratio of the expected two-stage cost and the initial number o; targets N
vs. N for p(l) = 0.6,p(2) = 0.7; N weapons are usedi in each stage.

large does N have to be for the approximation to be good.

In order to address this questi, n we have done the following. We have considered

tht problem of two stages T = 2 with M = 2N weapons. N weapons are used in each

of the stages (i.e. W = [1,.i]). We compated the exact value of the ratio .Fj(,Li) for

N = 10, 20,...,l150, and also in the limit as N goes to infinity. In figure 3.3 we have plotted

this r-,tio for finite values of N as well as the ratio in the limit of infinite N. In this case

we used a second stage kill probability of p(2) = 0.7 and a first stage kill probability of

p(i) = 0.6. Figure 3.4 contains plots of the ratios for the case of p(l) = p(2) = 0.5. Figure

3.5 contains plots of the log of the ratios for the case of p(l) = p(2) 0.7. Note that in each
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of the cases the difference between the limiting value and the value for finite N is small for

N > 100.

3.2.3 Optimal Number of First-Stage Weapons for a Two-Stage problem
with a Large Number of Targets

Note that in the discussion in the previous subsection the number of weapons to be used in

each stage was fiu;:,!d. In this section we will find optimal values for 9 as N goes to infinity.

This will give us a good approximation to the optimal solution for large values of N.

We will only consider the two-stage case, T = 2. The optimization could also be

attempted for T > 2, but it is doubtful whether one can find an analytical solution for such

cases. For the case T = 2 we know that K2 = K - K, since all remaining weapons are used

in the second stage. We therefore have a one dimensional optimization problem. We will

let x1 be the free variable. The optimization problem can be stated as:

min F2 (a, x - n1) (3.20)

subject to r., E [0, K]

where

The function F 2(a, r2) is given by:

n= [o -p( 2 )(r-2 )q(2) aJ

a

This exirression is difficult to optimize. However, if the integrality constraint is relaxed,

then the expected cost is given by aq(2)•'. Since this is a lower bound for the non-relaxed

problem, then

F2(a,,K1.) > aq(2) . (3.21)

This trates that the solution obtained by allowing fractional assignments in the second stage

is a lower bound to the solution in which only integral assignments are allowed. Note that

if L E Z+ then equality holds in expression 3.21. Therefore, if the solution to the problem
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using the lower bound as the objective function is a multiple of a then it is optimal for the

true problem.

The optimization problem using the lower bound in 3.21 as the objective function can

be stated as:

min aq(2)-7". (3.22)
KI1

subject to n1 E [0, r]

where

a = [1 - (Ki -. IJ)(]( - p(1))L'1J.

Let us first consider the case x = 1. Note that theorem 3.2 has already provided us with

a solution for this case. The solution is simply that all weapons should be assigned in the

stage with the higher kill probability. Therefore,

ro; = 0 for p(1) < p(2) (3.23)

K; = I for p(>) Ž p(2) (3.24)

Let us now consider the case in which r. = 2, i.e. a 2:1 weapon to target ratio. Using

straightforward calculus one can show that the optimal values of ci, are given by

K•=-0 for 2p()- (3.25)p•!) -<log(1 -p(2)) (.5

.*1= 1 for 2p(1)-I 1 -1
p(l)[i- p(1)] - log(l- p(2)) (-" (3.26)

-1 1
x = 2 for -1 ->3.7

p()[1 - p(1) >- log(l - p(2)) (3.27)

Note that if -1(71 E N then equality holds in 3.21. If this is the case then ,r. is optimal for

problem 3.20. Otherwise K*1 is approximately optimal.

In the plot in figure 3.6 the vertical axis represents the kill probability in stage 1 while

the horizontal axis represents the kill probability in stage 2. In each region we have indicated

the optimal value of mI, the number of weapons allocated in the first stage (recall that m -

tr*N) for the kill probabilities in that region. For example, consider the case p(1) = 0.8. If

0 < p(2) < 0.15 then it is optimal to use all weapons in stage 1. If 0.15 < p(2) < 0.55 then

I
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Figure 3.6: Optimal number of first-stage weapons, mi, for various kill probabilities with
M = 2N weapons, in the limit of an infinite number of targets, N.
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the optimal number of weapons to be used in stage 1 lies between N and 2N. If p(2) > 0.55

it is optimal to use half of the weapons in stage 1.

Note that for 0.6 < p(l) < 0.9 and 0.6 < p(2) 5 0.9 it is optimal to use half of the

weapons in stage 1. This implies that for the problems of interest to us (i.e large-scale

problems with kill probabilities greater than 0.6) it is optimal to use half of the weapons

in stage 1, even if the kill probabilities are different in each stage. This insensitivity of the

optimal strategy to the kill probbabilities is very interesting. We should stress that this

result is valid for large numbers of unit-valued targets and weapons

3.3 Unit Valued Targets and a Uniform Kill Probability

In the previous section we considered the case of stage dependent (but weapon and target

independent) kill probabilities. In this section we will, in addition, assume that the kill

probabilities are stage independent. We will assume that all targets have the same value and

that the kill probability is the same for all weapon-target pairs in all stages. Without loss of

generality we can assume that all targets have a value of unity. Under these assumptions we

have shown (theorem 3.1) that the optimal stratcgy has the property that the weapons to

be used at each stage must be spread evenly among the surviving targets, (Note that if the

targets had unequal values then one would need to find the individual target assignments).

'Therefore the only decision variable is the number of weapons to be used in the present

stage. Given this number, the optimal assignment for the present stage is obtained by

spreading these weapons as evenly as possible among the surviving targets. The weapons

are fired and the process is repeated. I. this section we will present the optimal solution

to this problem for the case of two targets. We will also present the solution il the limit

as the number of targets goes to infinity (while keeping the weapon to target ratio fixed).

These results will be used to compare dynamic and static strategies.
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3.3.1 The Case of Two Targets

In this subsection we will make the additional assumption that N = 2. Although this is

a simple problem, it has provided us with valuable insight. In the following theorem, we

will show that, in the optimal strategy, the weapons are spread as evenly as possible among

the stages left. Note that this theorem also holds for the case in which the targets have

different values. Once the number of weapons to be used in the first stage is known the

optimal assignment of these weapons to targets must be computed. We will see that this

assignment can be obtained by solving a static problem.

Theorem 3.7 An optimal strategy fo, the special case of the Dynamic Target-Based prob-

lem in which N = 2 and pi(t) = p is as follows. Let x, andi 2 denote the optimal assignment

of the two-target static problem with the same target values and kill probabilities as the dy-

namic problem but with LMJ weapons. The optimal decision variables for the dynamic

problem is given by x£ =tjx = il

Proof: We will first prove the following lemma.

Lemma 3.1 If the number of weapons to be used in the present stage is fixed then the opti-

mal assignment of those weapons is the same as the optimal assignment of the corresponding

static problem with the same number of weapons.

_____ ___ ________________ ________ ___________
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Proof of Lemma: Let us define q by q - 1 - p. Denote the optimal cost of the t-stage

problem with M available weapons by Fý-,+i(M). Therefore the optimal cost for the T

stage problem will be denoted by Fl(M). Let x, denote the number of weapons assigned

to target I in stage 1 and let x 2 denote the number of weapons assigned to target 2 in stage

1. Note that if one of the targets is destroyed in the first stage, then it is optimal to assign

all of the remaining weapons to the other target in the second stage. Therefore, the cost

F*(M) can be olbtained recursively by solving the following problem:

J F(M)= min {ql(1 - q2)VI +q-1(1 - qTI)V2T/qM-X1-•X2

+qx +x2F(M - x, - x2), (3.28)

subject to X, + x 2 < M, xi E Z+.

If the number of weapons to be used in the first stage is restricted to fn,,, then the optimal

cost, under this restriction is given by:

,F *(W) = mi qM, F(M - fill) - (V1 + V2 )qM + qM-f 'Y [Vlq" + V2qx2J. (3.29)

Note that this can be written as:

(M) =qF(M - nml) - (VI + V2)qM +4qM-•I {{ =min }[VlqX + lV2qc]} (3.30)

Nom iotice that the optimal values of the decision variables x, and X2 can be obtained by

"solving the corresponding static problem with in, weapons. This complete the proof of the

lemma. 0

Therefore, if we denote the optimal cost for the static version of the problem with M

weapons by F,(M) then, if the number of weapons to be used in the first stage is restricted

to fhl, we have:

LF(I(M) q I' F(M - nfil) -- (V1 + V2)qA + qM"-"` F,(fii). (3.31)

Similarly we can restrict the nmumber of weapon. to be used in stage 2 to fi-2 and write F,*

in terms of F;. This value can then be substituted in 3.31. This process can be repeated
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for all stages. If we denote the optimal cost given that the weapons per stage is restricted

to in by F, (M,rif,) thea we obtain (by induction)

T
FM, in)F,*(mt) - (T - 1)(V1 + V2)qM, (3.32)

The optimal number of weapons per stage can now be obtained by minimizing F, (Mf, ffi)

over m~. Given these optimal values, lemma 3.1 may then be used to obtain the opti-[nial ass;ignmenxts. The optimal solution can therefore be obtained by solving the following

problemn:

Fý (M) =m i F1 (M, :), (3.33)

T
subject to T rn t

f=1

We will solveý this problem by applying theorem B.1. To do this we need to show that the

San ction F, M, 77,) satisfies the conditions required to apply the theorem. This can be done

by showing i the function q~m-mF:(mt) is convex. We will state this result as a lemma.

r Lemnma 3.2 "lihe function qMmtF(mt) is a convtex function of mf.

1.P ýoP_ f: ~:'proof of this lemma is straiglitforwarward but lengthy. We have hicluded it ini

Apit .iý - iixB U

If we ;ýppl?' theorem ý-.1 we will fint. that the optimal solution ha~s the property that

ýhe wc-,pons are spread -x e 'e.ery as possible among the 7' s1'-1ges. Therefore, an optimal

strate, y for thte present sýLqc is to use [ fj of the weapons and to assign these weapons

K xs they woinid be assigned for t.-,, correspo:iading static problem. This completes the proof. U

K 'Theorem 3.7 is an interesiting result beca-use2 we find tl-ai the weapons are spread evenly

among the stages. We will com~ ~urpute the cost of '' Ilptimal strategy. Define the

I following, variables:

"4fT
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jef

X11A

def

Xul = F-1T
def

Using the results from theorem 3.7 it can be shown that the optimal cost F, 1(M) for the

case V1 = V2 = 1 is given by:

F1 (M) = (M - Tmi)[q9"u + qruu] + (Tm, - M)[qx" + qwul] - 2(T - 1)qM. (3.34)

In the special case in whikh M = 2kT for some positive integer k (i.e. if the two targets

survive all stages then in each stage k weapons will be assigned to each of them), the optimal

cost can be simplified to

Fj(M) - 2[Tqm-k - (T - 1)qM]. (3,35)

Note that if the number of stages is large then F*(M) ;• 2qM. The optimal cost for the

static problem with M weapons is 2q2. This implies that roughly half as .,Tany weapons

are required for the dynamic case to produce the same optimal cost as for the static one.

The comparison of the dynamic and static strategies in terms of the number of weapons

saved wil discussed in more detail in subsection 3.3.3.

Let us, note the op..imal cost for the dynamic two-stage problem using M weapons by

F;(M). Let us denote the optimal co!,t for the corresponding static problem by F.(M). In

figure 3.7 we have plotted the log of the ratio of the optimal two-stage cost to the optimal
static cost, iogfr- tin )/" r lvi )1, Io- .- I Itut I.. weapo Al' I o, in 10, nn

ve:sus the kill probability p. Note that the ratio decrvases as p increases ?s ai ns when M

increases. This means that as either the number and/or the effectiveness of the defensive

weapons increase, the advanw.age of using a two-stage dynamic "shoot-look-shoot-..." type

of ,trategy also increases.

ý.et us denote the optimd cost for the dynamic T-stage problem by F*(T). In figure 3.8

we have plotted the log of the ratio of the optimal dynamic and static costs log[F*(T)/F( 1)]
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Figure 3.7: Log of the ratio of the optimal two-stage dynamic cost and the optimal static
cost vs. the kill probability p for different weapon totals, M = 4,8,12,16,20, (N = 2).
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versus the kill probability p for different number of stages T = 2,4,8. The number of

weapons is kept fixed at Al = 16. It can be shown that for T > M/2 the optimal dynamic

cost remains constant. In other words, the inclusion of additional stages does not improve

the optimal cost. Note that the cost improvem-nt of the dynamic model improves with the

number of stages (up to a point) and with the kill probability.

3.3.2 Numerical Rest Its

In this section we will consider the case of N equally valued targets with a uniform kill

probability for all weapon-target pairs and all stages. In the previous subsection we con-

sidered the case of two targets N = 2. In section 3.2 we considered the case in the limit

of an infinite number of targets N z oc. For general N there does not app(-.3r to be an

analytic solution to the problem. One must therefore compute solutions numerically. In

this section we will compute the solutions for some simple cases and use the .esults of the

pr(:vious sections to provide bounds.

Theorem 3.1 states that, in the optimal strategy of this problem, the weapons to be used

in each stage should be spread evenly among the surviving targets. The decision variable

will therefore be the number of weapons to be used in the first stage, rnl. The remaining

weapons are used in stage two. Given the optimal values of mi the optimal assignment

can be obtained by spreading these weapons evenly among the targets. The expected cost

for the T stage problem in which mn, weapons are used in the first stage will be denoted

by Fs(ml). We computed optimal solutions for a two .;tage problem with N unit-valued

targets, M weapons and a single kill probability p for all weapon-target pairs and both

stages.

Table 3.3 contains the optimal values of rn1 for the cases p = 0.9,M = 2,... ,25, and

N = 2,..., 10. The cases for which M is a multiple of N is written in boldface type. An

interesting feature to note is that if I < M < 2N then the optimal value of m, is N. Note

that this is not true for M = 2N as can be seen from the case M = 14,.N = 7. For Al > 2N

the optimal values of nil are close to M/2 but tend to be a imiltiple uf N.
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M N=2 N=3 N=4 N=5 N=6 N=7 N=8 N=9 N=:10
2 2 2 2 2 2 2 2 2 2
3 2 3 3 3 3 3 3 3 3
4 2 3 4 4 4 4 4 4 4
5 2 3 4 5 5 5 5 5 5
6 3 3 4 5 6 6 6 6 6
7 4 3 4 5 6 7 7 7 7
8 4 4 4 5 6 7 8 8 8
9 5 5 5 5 6 7 8 _ 9
10 5 6 4 5 6 7 8 9 10

11 6 6 7 5 6 7 8 9 10
12 6 8 8 6 6 7 8 9 10
13 7 7 8 7 7 7 8 9 10
14 7 8 8 10 6 8 8 9 10
15 8 9 9 9 6 7 8 9 Ic
16 8 9 8 10 12 7 8 9 10
17 9 9 8 10 11 8 8 9 10
18 9 9 12 10 12 14 8 9 10
19 10 11 12 10 12 13 10 9 10
20 10 12 12 10 12 14 8 9 10
21 11 12 12 11 12 14 15 9 10
22 11 12 12 10 12 14 16 10 10
23 12 13 13 15 12 14 16 11 1

12 12 14 12 14 12 14 16 8 12
25 _ 13 15 15 15 13 14 1 16 18 10

Table 3.3: Optimal number of first stage weapons for a two stage problem with a. uniform
kill probability of p = 0.9.
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__ -2 N N--4 N=5 -•- N N
__2 2"... 1 2- 2 2 21

3 23 3 3 {3 3 3 3 3_
4_ 2 3 4 4 J-. 4_ 4 4 4

5, 2 3 4 5 5 -5- ,
S3_ 3 4 5 - 6 6 6- 6
79 4 4 4 5 T 7 78-

714 34 4 5 6 7 7 7 7

9 -- 5 - 7•- ---- -- -9-
10 5 6 4 5 6 7 9 )__

76 7 5 8 9 10
A1286 6 816 7 8_

13 77 7 7 8 9 101
12 __ ___' "- - ---" -€-, -7 9 -- 1

14 7 8 8 10 7 8 9 I10
15 8 9 9 10 9 7 8 9 10

18 10 10 7 8 9 i10
17 9 9 11 10 11 9 8 9 10
18 _• _i 12 1.0 12 12_ 8 9 10
1910 6 1 10 12 y13 9 9 10

-20_-10 12 12 1.0 1--- 14 12 9 10
21 11 __2 12 __1 12 14 15 9 10

-22 1 1 1 2 14 12 14 16 10 10
23 12 131 13 15 12 14 1,5 15 11
24 12 1415 22 14116 16 12
25 13i 1 5 113 14!1 166 1' -13 _

Table 3,4: Optimal number of first stage weapons for a two stage problem with a uniform
kill probability of p 0,.5.

Table 3.4 contains the optimal values of ml tor the cascS p 0.5, M 2,...,25,

and N = 2,.... ,10. We again find that a. good approximatio. ?o,) the optimal value is

ni = N for A1 < 2.N and ai ;-j M for Al > 2.N. Note that these optimal values do not

incrtas•, monotoricraly with th4r nuhber nf wepnonn. a., can he seen in the r:ýo N V= 4 For

11 = 22,23,24. Here the optimal values of m7 are 12,13,12 respectively. This is dufý to the

di-screte nature of the problem.

SIa
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M IN=2'N=3 N=4 N=5 N=6 N=7 N=8- N=91 =10
2 2 2 2 2 2 2- 2 2 2
3 2 3 3 3 3 3 3 3 3
4 2 3 4 4 4 4 4 4 4
5 2 3 4 5 5 5 5 5 5
6 3 3 4 5 6 6 6 6 6
7 4 3 4 5 6 7 7 7 7
8 4 4 4 5 6 7 8 8 8
9 5 5 4 5 6 7 8 9 9

10 5 6 4 5 6 7 8 9 10
11 6 6 5 5 6 7 8 9 10
12 6 6 6 5 6 7 8 9 10
13 7 7 7 5 6 7 8 9 10
14 7 8 8 8 6 7 8 9 10
15 8 9 8 9 7 7 8 9 10
16 8 9 8 10 8 7 8 9 10
17 9 9 8 10 9 7 8 9 1o
18 9 9 9 10 10 8 8 9 10
19 10 10 11 10 11 9 8 9 10
2|0 10 11 12 10 12 10 8 9 10
21 11 12 12 10 12 11 9 9 10
22 11 12 12 10 12 12 10 9 10
23 12 12 12 11 12 1.3 11 9 10
24 12 12 12 14 12 14 12 10 10
25 13 13 13 15 13 14 f13- -11 10

Table 3.5: Optimal nui,-ber of first stage weapons for a two stage problem with a uniform
kill probability of p = 0.1.

Table 3.5 are results for the cases p = 0.1, M = 2,... ,25 and N = 2,..., 10. Note that

in most physical situations the kill probability will not be as low as 0.1. However, we wanted

to investigate how the optimal values of mi changed with the kill probability. We found

that for p = 0.9 and p = 0.5 the optimal strategy was to use roughly hialf of the weapons

in stage 1. Therefore if there was a dependency on p we believed that it would show up for

the case p = 0.1. However, for this case as well we find that the opCnal strategy is again

to uTe roughly half of the weapons in stage 1 if M > 2N.

Observe that, for all cases except one, the optimrAl value of m. for the case M = 2N is

N. Ther,6forf. if the weaton-t,.rget ratio is 2:1 then it is optimal to use half of the weapons

in stage 1. Rf,,call also thi;tt for the case N = 2 ajnd for large values of N this w;ts the optimal
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thing to do for a 2:1 weapon-target ratio.

Note that the optimal value of ml tended to be a multiple of N. This tendency seems

to be gr,!ater for the higher kill probabilities. For example consider the case M = 25 and

N = 9. For a kill probability of 0.9 it is optimal to use 18 weapons in stage 1. Therefore two

weapons are fired at each of the targets in stage 1. On the other hand if the kill probability

is 0.1 then the optimal strategy is to use II weapons in stage 1 which is roughly half of the

weapons.

Our conclusion is that it appears that a near-optimal solution to the two-stage problem

is to us, half of the weapons in stage 1 if the kill probability is small. If the kill probability

is large then an approximate solution is to use the number of weapons in stage 1 which is

the smallest multiple of N greater than M/2.

Figure 3.9 is a plot of the ratio of the optimal dynamic two-stage cost to the optimal

static cost versus the kill probability p with a 2:1 weapon to target ratio (i.e M = 2N).

We have plotted the cases N=2,4,9,8 and 10. We have also plotted the ratio in the limit

as N goes to infinity. Note that this provides a lower bound for the case of finite N.

IHere we see that, as the sizes of both offensive and defensive stockpiles iDc',ase, the cost

advantage of the dynamic strategy increases. This implies that, for large-scale problems,

the dynamic shoot-iook-shoot strategy will have a significant cost advantage over the static

one. However, we also note that the increase in the cost advantage decreases with N.

Therefore, if the number of targets N is very large it might be better to split the problem

into two smaller problems. This increases the optimad cost slightly, but greatly reduces the

complexity of the problem.

Figure 3.10 contains a plot of the ratio of the optimal two-stage cost to the optimal

static cost versus the number of weapon:; M with a kill probability of p = 0.5. We have

plotted the cases N=2,4,6,8 and 10. Note that the cost advantage of the dynamic strategy

increases roughly exponentially with the, number of weapons. This implies that the dynamic

strategy is significantly better even for relatively small weapon to target ratios.

Figure 3.11 contains a plot of the ratio of the optimal dynamic and static costs versus

_ _ _ _ _i
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Figure 3.9: Plce of the ratio of the optimal dynamic (two-stage) and static costs vs the kill
probability for a 2:1 weapon-target ratio, (N = 2,4,6,8, 10,oo).
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Figure 3.10: Plot of the ratio of the optimal dynamic (two-stage) and static costs vs. the

number of weapons M, for different numbers of targets N=2,4,6,8,10, with p 0.5.
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Figure 3.11: Plot of the ratio of the optimal dynamic and static costs vs the number of
stages, T, available; MIN = 2 and p = 0.5, (N = 2,3,4,oo).
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the number of stages 7'. We used a 2:1 weapon to target ratio and p 0.5. The cases

N = 2,3 and 4 were plotted as well as the limiting case as N goes to infinity. The latter

plu provides a lower bound for all cases of finite N. Using theorem 3.5 we can show that

in the limit as N goes to infinity the ratio of the T stage cost to the static cost is equal to

2 1-T.

Note that the advantage of the dynamic strategy increases with the number of stages.

For finite values of N the advantage increases up to a finite number of stages. Beyond

this point the advantage remains constant because there are not enough weapons to make

use of the additional stages. Note that, for large values of N, most of the improvement

is obtained for a small number of stages (approximately 5 for this example). For a kill

probability of 0.8 most of the improvement will be obtained for three stages. Recall that

the computational complexity of the problem increases exponentially with the number of

stages. This suggests that the defense should use a small number of stages in its strategy

(roughly 3) since this provides a significant increase in performance over the static strategy

and the computational complexity is not too great.

The above results indicate that the dynamic strategy offers a significant cost improve-

ment over the static strategy but with an increase in the problem complexity. This im-

provement increases with the size of the problem as well as with the number of stages. We

believe that by using sub-optimal algorithms for the dynamic problem one can obtain a

significant cost improvement with only a moderate increase in problem complexity.

3.3.3 Comparison of Dynamic and Static Strategies

We have seen that the use of a dynamic strategy can significantly decrease the expected

number of surviving targets. However, we have also seen that thc_ complexity of such

a strategy is much greater than that of the static strategy. One must therefore decide

whether the cost improvement of the dynamic strategy is worth the increase in the problem

complexity. This decision is of course dependent on the problem being solved and on the

computational resources available for solving it. In this section we will provide another view
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of this trade-off which can help in making the right decision. We will show that by going

to a dynamic strategy the defense can effectively double its arsenal of weapons. In other
words, half as many weapons (with the same effectiveness) are required for the dynamic

strategy to obtained the same cost performance as the static one.

For a given problem one can further reduce the optimal cost by either increasing the

number of stages while keeping the number of weapons fixed or increasing the number of

weapons while keeping the mnmber of stages fixed. Suppose that M weapons are available

and that the optimal static cost is given by F.(M). Now consider the situation iln which the

number of stages T is large'. Let Md be the number of weapons which, if used in a dynamic

strategy, results in an optimal cost of F,(M). In other words, let Fd(M1) = F8 (M). One

can then compare M and Md to decide on whether to use a dynamic strategy or increase

the number of weapons.

In the case of N = 2 we have shown (section 3.2.1) that if the number of stages is large

and M = 2T, then the optimal dynamic cost Fý(M) ; 2(1 - p)M, The optimal static cost

is given by F.(M) = 2(1 - p) . Therefore in this case Wd - M. In other words, half as

many weapons are required ior the dynamic strategy to obtain the same optimal cost as

the static one.

Let us now consider the case for large values of N. Let M = KN for some K E N. The

optimal static strategy is to divide the weapons equally among the targets. Therefore, the

optimal static cost is given by

F,(M) = N(I - p)'.

Let us now consider the dynamic problem. in theorem 3.3 we showed that if the number of

stages is large then the optimal strategy at each stage is to assign a single weapon to each

of the surviving targets. If N is large then we know, by theorem 3.5, that the problem can

be treated as a deterministic one in which the number of targets in a stage is equal to the

expected number of targets that survive the previous stage. If a single weapon is assigned
2

Recall that increasing the number of stages beyond the number of weapons cannot improve the optimal

cont.
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to each target in stage 1 then the expected number of surviving targets is N(1 - p). If a

single weapon is assigned to ea-h target in stage 2 then the expected number of targets

which survive stage 2 will be N(1 - p)', etc. Therefore, we can use theorem 3.5 to show

that, after T stages

lim Fd(Md) = (I - P)T.
N-.oo N

Therefove if N is large then Fd(Md) - .N(1 - p)T. We now need to compute the number of

weapons used. Again, for large N it can be shown that

Md N(1 + (1 -p) +... + (1-p)")

If we now equate the optimal static cost with the optimal dynamic cost we obtain T =

Therefore
M _ p

M I - (1 -p)W

We stress that this result is only valid for large values of N and equal. valued targets. Let

us look at some special cases:

K. = 1: If r. = 1 then 1-=i. Since T = K = 1, this implies that the dynamic strategy is a

single stage problem which is the static problem. Therefore, the result is correct.

p • 0: As p tends to 0, * converges to 1. Again this is correct since the optimal cost in

both cases goes to N.

p % 1: As p tends to 1, Ad converges to n. Note, however, that if p = 1 then the ratio

should be 1 since both strategies can destroy all targets with N weapons. If M = N

then K = I so the ratio tends to 1 as required.

K, oo: If n, is large, so that (1 -p) « << 1, then M - np. Here we see that the defensive

advantage grows with the number and effectiveness of the weapons.

_ _ _
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Let. us consider a typical problem with a 2:1 weapon to target ratio and a kill probability

of 0.8. In this case
M_ 2 - 1.67.
Md 2-p

* Therefore, for typical problems with a large number of targets, roughly half as many weapons

are required for the dynamic strategy to produce the same optimal cost as the static one.

Recall that the same was found to be true for the case of two targets. We can therefore

conclude that for most problems the ratio is roughly half.

3.4 Weapon Independent Kill Probabilities

In this section we will study the Two-stage Target-Based problem with the sole restriction

that the kill probabilities are independent of the wciapons. In chapter 2 we showed that the

MMR algorithm produced the optimal assignment for the static version of this problem.In

this section we will find that a MMR-type algorithm produces the optimal solution for the

case of two targets.

The following notation will be used for the problem. The cdefinitions of all additional

notation can be found in Appendix A.

N def the number of targets (offense weapons),

*Al d the number of defense weapons,

deVi  =ýý the value of target i, i = 1,2,,..,N,
pi(1)4- the kill probability of a weapon on target i in stage 1,
pi(2)Lf the kill probability of a weapon on target i in stage 2,

defml = the number of weapons used in stage 1,
defM2 = the number of weapons used in stage 2, (in1 + m 2 = M),

def
f the N dimensional vector [Xi,... ,XN]T.

The vector fV E {0, I}N will be used to represent the state of the targets after the first stage.
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The states will be denoted as follows:{ 1 if target i survives stage 1
Ui - 0 if t.Lrget i is destroyed in stage 1

If the state of the targets after the first stage is il, and the number of weapons available for

the second stage is m2, the optimal cost for the second stage will be denoted by F2(m2, i7).

For the dynamic problem two things must be decided, (a) the optimal number of weapons

to be used in the first stage, ml, and (b) the optimal assignment of these weapons to th,,

targets, i. Note that, given the number of weapons to be used in the first stage and the

assignment of these weapons to targets, one can compute the expected cost, under the

assumption that the optimal assignment is uied in the second stage. Let F1(ml,i) denote

the expected cost if m, weapons are used in the first stage with a first stage assignment

given by i. We have:

F,(ml, i) Z f {uiqi()X + (1 - u1)(1 -- qi(1)Xl} F2(M-mr,d). (3.36)

We can now use this expression to state the Dynamic Target-Based problem in the case of

a single class of weapons.

Problem 3.2 The Single Weapon Class, Dynamic Target-Based (SDTB) problem can be

stated as:
rain mill Fi(mi,i)}

{,niEZ+} 1.{90EZ4'}

N

subjec ;to Xi = M1I
i=1

and 0 < m, i M.

Note that thoptimization problem is made up of (a) finding the optimal number of weapons

to be used in stage 1 (i.e in') and (b) finding the optimal assignment of the stage one

S. .. . . . . .. ... ... . ... . .. . .. . . | . .. ... ... .......i -i ll iI
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weapons. We will call problem (a) the main problem and problem (b) the assignment

subproblem. These problems will be studied separately. If we fix the number of first-stage

weapons rnm to be arbitrary, then the assignment subproblem can be written as:

Problem 3.3 (Assiiinment Subproblem):

min F, (mI, 4)

N
subject to Zxi mi,

i--1

Now if we denote the optimal assignment for this subproblem by "(mi), then the dynamic

problem 3-2 can be restated as follows:

Problem 3.4 (Main problem):

min Fi(m1,i(mi))
{l -EZ+}

subject to V_<m, <:M.

In subsectio,; 3.4.1 we will present an MMR-type algorithm for the assignment subproblem.

We will show that this algorithm produces an optimal solution for the case of two targets.

We have shown that the objective function of problem 3.4 is not unimodal. In subsection

3.4.2 we will assume that the assignment subproblem can be solved and present an algorithm

for obtaining at least a local minimum for problem 3.4. The algorithms presented in sections

3.4.1 and 3.4.2 can be combined to obtain an algorithm for producing a near-optimal solution

to the original problem 3.2.

3.4.1 A MMR Algorithm for the Assignment Subproblem

In this section we will consider the assignment subproblem 3.3. We wiil assume that m1

is fixed and consider the problem of finding the optimal assignment for these weapons. A
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Maximum Marginal Return Algorithm, similar to that used for the static problem, will be

presented. We will prove that this algorithm yields optimal assignments for the case of two

targets. We conjecture that it produce., a near-optimal solution for the case of more than

two targets.

The algorithm to be presented, sequentially assigns the rni weapons in the first stage.

Note that in the second stage, M - m, weapons will be assigned. Let us denote the stage

1 assignment vector if k weapons have been assigned (in stage 1) by Y(k). The marginal

return of adding an additional weapon to target i can then be written as

= Fl(:(k)) - Fl(i(k) + e.)

where eT = (0,.... ,0, 1, 0,..., 0). For a first stage assignment of F, let

S i(Z(k)) 4-2 the expected cost, given that target i survives the first stage,
- df

DiF(k)) t= the expected cost given that target i is destroyed in the first stage.

Note that Si and Di depend on the number of weapons k that have already been assigned

in stage 1 as well as the assignment of these weapons S(k). Note that it also depends on

the number of weapons available in stage 2. It should be emphasized that it was assumed

that rnm weapons are available in stage 1 and so M - mn (and not M - k) weapons will be

assigned in stage 2. We can write

Fl(;(k)) = qi(1)"Si(i(k)) + (I - q(.1)')Dj(F(k)),

and

Fl (4(k) + ej) = qj(1)x'+'Sj(Z(k)) + (1 - qj(1)"+')Di(k)).

Therefore

Aj(:F(k)) = pi(1)(1 .- pi(1))x[Si(i(k)) - Di(:(k))].

Recall that for the static problem the marginal return of adding a weapon to a target which

already had zi weapons assigned to it was Vipi(1 - pi)-,. Therefore the marginal return for

the dynamic problem can be thought of as the marginal returii for a static problem with a
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procedure MMR
Pick a value for ml;
begin j:= [0 ,..... 0]'r;

for i = 1:N do A,:= V/(i(0))pj(1)
for j = 1:ml do
begin

Let r be such that A, = maxj{Ai);
Xr := Xr + 1;
for i = 1:N do A, := V7(Z(j))pi(1)(1 - pi(1))z'W;

end
end

Figure 3.12: A MMR algorithm for the Assignment Subproblem

modified value ¾j(Z(k)) gixen by

fj(i(k)) E SS(Z(k)) - Dj(5(k)).

However, note that, unlike the static problem this value depends on the number of weapons

k that has already been assigned and it also depends on the specific assignment F of these

weapons.

In figure 3.12 we have written the code for an MMR. algorithm for the assignment

subproblem. Each time a weapon is assigned, in stage one, the marginal returns of all

targets must be updated. If k weapons have already been assigned in the first stage with an

assignment E(k), then, the marginal return of increasing the number of weapons assigned

to target i is given by

A:k) = 0; (,1(, _-,j)jkrq,:() - n(Fk)

= p1 i-))xi(k).

The only difference between this algorithm and the one that was given for the static problem

is that the value of the target is modified each time a weapon is added. Note that the

algorithuo for the static problem is the special case of the algorithm presented in 3.12 in

which m, = M and m2 = 0. For this cae it is easily seen that fl-(:(k)) = Vi for all values

of k.
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One of the most computationaly intensive parts of the algorithm in figure 3.12 is the

computation of V/(i(k)) especially for large values of k. In practice it would be best to

approximate this value. One such approximation has been suggested by Castafion et al.

[10]. We will briefly describe this approximation.

Let t7 E {0, 1}N-K denote the state after stage 1 of all targets except target i. Let us

denote the second stage cost if the state is i! and target i is destroyed by F2(m 2, i). Also

denote the number of weapons assigned to target i in stage 2 if target i survives and that

the state of the other targets is Ci by x,(ft). We can write

V = S,-D,

= > Pr(il = )[Vi(1 -- pt(1))ri(o) + F 2 (mn2 - xi(ti), 0) - F2 (m 2 , 0))
tDE {0,I }N-I

We can assume that the function F 2 (m2 ,JZ) is smooth so that if we denote its mA.rginal

return at m2  xi(ti) by Ai(iT), then

2(M2- zi - F.2(m 2, 6) x x(6Z) A (i!).

Therefore

ý' Pr(9 0=V~ - pjl)-v)+
oc-{o,i}

An iterative procedure is then used to approximate the right hand side.

Another approach that can be used to approximate value of fli is to use Monte Carlo

simulations3 . Recall that

Vj(i(k)) --'S(,F(k)) - Dj(E•(k)).

We can find approximate values for Si and Di as follows. We will simulate the outcomes of

all targets except target i as follows. For each target j we will flip a coin. Yf xj weapons have

been assigned to the target then the success probability of the coin will be (1 - pj(i))ra. If

the flip is successful then we will as,;urne that the target survived. If the flip is unsuccessful

then we will assume that the target was destroyed. Suppose that the target state after all

3 A .,imilar approach will be used for the more ditticulh problem in chapter 5.

I - - . -I i
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flips have been performed is i. Si is approximated by computing the second stage cost

under the assumption that target i survived and the target state of the other targets is

6i. Call this cost Si. Di is approximated by computing the second stage cost under the

assumption that target i is destroyed and the target state of the other targets is ii. Call

this cost Di. We then have

Vi(k)) Z -

Several of these Monte Carlo runs can be performed and the sample mean taken as an

approximation to Vi.

We believe that the assignment produced by the MMR algorithm is optimal but have

not been able to prove this in general. We can however show that it is optimal for the case

of two targets. This result, which holds for ,ny number of stages is given in the following

theorem:

Theorem 3.8 Consider the T-stage Dynamic Target-Based problem .vith two targets and

with weapon independent kill probabilities. If Mhe numbers of weapons to be used at each

stage is fized then the optimal assignment of the weapons for the first stage can be found by

using a MMR algorithm.

Proof: To simplify the notation we will denote the kill probabilitieE of the first stage by pi

instead of pi(l). We will prove the theorem by induction on the stages. Note that it is true

for the case of a single stage since this is the static problem for which the MMR algorithm

is optimal. Let us assume that the theorem is true for all stages but the fiLst. We will now

prove that it holds for the first stage.

The proof of the optimal assignment of the weapons in the first stage will also be by

induction. The number of weapons used in the first stage is ml. If m, = 1, then this weapon

should be assigned to the target for which the reduction in cost is maximum. Therefore, the

theorem holds for the case m, = 1. Let us assume that the theorem is true for m, = K - 1

weapons and consider the case m, - K. Denote the optimal assignment for the catse of

K - 1 weapons by ;F. We will denote the corresponding cost by F1(;). The assignment

-- am
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which is the same as :i except that an additional weapon is assigned to target i will be

denoted by Y + ei, and the corresponding cost will be denoted by F1(5 + e,). Let

Si(i) = the expected cost given that target i survives the first stage.

Di (Z) 4fthe expected cost given that target i is destroyed in the first stage.

We have

= (1 - pj)x'+l[Sj(X") - D ((f1)] + Di(;F).

Since F,(:) = (1- pj') [S(i) - Dj(4)] + Di() then we can also write:

F(:F+ c;) = (1 - p ()F1(i) + piDi(F)

Let F be any assignment of the K weapons. Denote the cost of this assignment by F1(rj.

For any target j such that rj > 0, let F- ej denote the assignment which is the same as

F except that one less weapon is assigned to target j. Let Dj(*) denote the expected cost

given that target j is destroyed in the first stage and let Sj(r) denote the expected cost

given that target j survives the first stage. We then have

F,(r = (I - ;,j)Fi(F- ej) + pjDAj)-

Therefore, for any pair of targets i and j with rj > 0 we hzvc

Fl(-rl)-F,(E+ ei) = k(F-- ej)- F,(:)+ pi[•] (xT)- Di(;F)]- pi[Fl(- ej)- Vj(r].

From our induction assumption, we know that F 1(F- ej)> F1 (sF). This implies that

,.F(0 - j�(J9 +e) [ p-(-) - D4511_ -,[.- _ .

If pi[[F(x - D,(•)] _ p1[PI(F- ej) - D3 (F-], then the proof is comp)ete. Unfortunately,

this is not always the case so let us assume that p,[F,(:) - Di(E)] < pj[FI(r- ej) - Dj(r].

We will also assume that i is chosen so that Pi > pj. Note that this can always be done

(since we can always choose i = j). These assumptions can be combined to obtain

( pj)[F6(- ej) - Dj(r-] 2! (1 - p;)[F,(:) -D&()]. (3.37)
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The cost difference of the two assignments can also be written as:

J Fi(r- - Fj(Y+,Pje) = (1 - pj)[F1 (F- ej) - Dj(r-l) - (I - pj)[F, (f) - D;(i')] + Dj(r• - Dj(f).

Using the inequality in 3.37 we have:

F,(- - F,(:+ e,) :> Di() - D,(i). (3.38)

Let us assume that target k is the one with the largest marjginal return, then

F1(F± ek) F1( + e;).

Using this in 3.38 we have that

F1 () - F1 (Y+ ek) >2 Di(f) - Di(Y). (3.39)

If we can prove that for some i and j such that r. > 0 and pi i Pj, Dj() Ž Di(F), then

we have F1(F) Ž FI(Y + ek) which implies that the assignment obtained using the MMR

algorithm is as good as assignment F. Since assignment f was chosen arbitrarily, then we

are done. Since we have not used the fact that N =-- 2 the proof would hold for all N.

Unfortunately, we have uot been able to show in general that, for some i and j such that

rj > 0 and pi > pj, Dj(r-) > Dj(Y). However, consider the case of two targets. N = 2. Since

:? $ F then there must exist a target j for which rj > xj. For simplicity let us assume that

this inequality holds for target 1. Since theme are only two targets then

Dr= V2(1 - P2(l))(- P2( 2))"

and

DI(Y) = V2 (i - P2(1))"2 (1 - p2(2))" 2

Since r, > xz then it must be that x2 > r2 which implies that D(r-") > D1(i). Hence the

theorem is true for the case of two targets. m
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procedure
begin

Pick a value for mi E {1,2,..., M - 1};
Repeatwhile 0 < in < M

If Fi(nI + 1, i(rni + 1)) <z Fi(mnl, E"(rnm)) then
i-- mn, + 1;

elseif Fi(mI - 1, E (in1 - 1)) < Fi(mi, i(m1)) then
in -- - 1;

else
quit

endif
end

end

Figure 3.13: Algorithm for finding a local minimum of the function FI(mi, Z"(mn)), i.e. the
optimal value if the number of stage one weapons is fixed at ml.

3.4.2 Optimal Number of First Stage Weapons

In this subsection we will assume that the assignment subproblem 3.3 can be solved. Denote

the optimal assignment, if nil weapons are used in stage 1, by i'(mnl). Since the function

Fj((m,,7'(?nj)) has multiple local minima, a global search will have to be done to obtain

the global minimum. We believe that for most practical purposes a local minimum will

suffice4 . A local minimum can easily be found by the use of a local search algorithm such

as the one given in figure 3.13.

In each iteration an assignment subproblem must be solved. Since this requires a great

deal of computation it is best to make approximations. The following approximation has

been used by Castafion et al [10].

Let rl 104," m2) denote the optimal cost for the problem if rn7 weapons are used in stage

I and M2 weapons are used in stage 2. Each iteration requires the computation of the

following quantity:

Fm(ml,m 2) - F1(mI + 1,m2 -1).

If this quantity is positive then the solution can be improved by reducing the number of

"4Recall the example given in figure 3.1 and the corresponding discussion.



CHAPTER 3. THE DYNAMIC TARGET-BASED PROBLEM 104

weapons in stage 2 by one ?nd increasing the number in stage I by one. This quantity can

be approximated as follows:

Fi(rni, m2 )-F1 (rl+ 1, M2 - 1) P- [FI(MI, M2)-Fj(mj+l, tn2)+Fj(rn1, M2)- FI( rnl, m2•-1)]

where F1 (rn,1 , M2) - F1 (mrn + 1,m2 ) is the marginal return of adding a weapon to stage 1.

If the MMR algorithm of the previous subsection is used to solve the subproblem, then this

difference is given by

F (MM)f1(MI + 1, M2) =a

The difference F, (mi, M2 - 1) - F, (ml, m2 ) is the marginal loss of removing a weapon from

stage 2. This quantity is given by

F1(MIm-,1) -M F1(ml, m2) = E Pr(i = CO) min {Vip,(1)(1 - pi(1) )'(il)-l}.
~E{{,1}N{ilx,(a)>0}

An iterative process is used to obtain this difference. These approximations are used to

compute an approximate value for the quantity F1(mi, m 2) - Fi(rm1 + 1,m 2 - 1). Similar

approximations can be used to compute an approximate value for the quantity F1 (mI, m2)

F,(m, - 1,m22+ 1).

3.5 Concluding Remarks

The following conclusions about the dynamic Target-Based problem can be drawn from the

results of this chapter.

* An optimal solution cannot be obtained for the general problem 3.1 (in practice)
hoca qp of the cnrMplltatinnli romnilevtv of t-'ie prel~e

S. .. . . . ... .. . . ... 1. _ - 1 -. . p o l m

a Even under the assumption of weapon independent kill probabilities, the problem is

still computationally difficult because multiple minima may exist (proven by example).

However, we have also found that, if this is the case then the difference in cost between

any two local minima is small compared to the cost of either of them. This suggests;

that each of these local minima correspond s to a near-optimal solution to the problem.
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* If we assume weapon independent kill probabilities and assume that the number of

weapons to be used in each stage is fixed, the problem is still difficult. The difficulty

is due to the fact that the cost-to-go function is not separable with respect to the
assignment variables. We can show that for the case of two targets a MMR algorithm

"is optimal. We conjecture that such an MMR algorithm will produce a near optimal

solution for more than two targets.

a For the case of unit valued targets, a single kill probability and many stages we have

found that roughly half as many weapons are required for the dynamic strategy to

obtain the same performance as the static one. This result was proven for the case

of two targets. We have also shown that it holds approximately for large numbers of

targets. Our results also show that most of the efficiency of the dynamic problem is

obtained by having 3-5 stages.

e In the case of the two-stage problem with a large number of unit-valued targets, stage

dependent kill probabilities in the range 0.6 _• p(l),p(2) _< 0.9, and a 2:1 weapon

target ratio, it is optimal to use half of the weapons in stage 1. This suggests that,

for the more general problem, if the dependency of the kill probabilities on the st..ge

number is small then a good approximate solution can be obtained by assuming stage

independent kill probabilities.

There are several directions in which one may continue this research. One conjecture which

we were unable to prove is that the MMR algorithm is optimal for the assignment sub-

problem for the case of more than two targets. We have not considered solving the most

general form of the problem (i.e with kill probnbilities that depend on the weapon, target

and stage), because of its difficulty. The algorithms in this chapter can be modified and

applied to the gener.l problem. Even if heuristics are used, the computation time of these

problems is apt to be great for large-scale problems that must be solved in practice.

In practical settings, it is vital that solutions be obtained as quickly as possible. This

will require the use of parallel computers. These computers will require algorithms which
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are easily parallelizable. Research into parallel algorithms for the problem is required.

Furthermore, in practice the computational centers and information retrieval centers will

be geographically dispersed. This suggests the use of distributed algorithms as well.

.11



Chapter 4

The Static Asset-Based Problem

In this chapter we will consider the static version of the Asset-Based WTA Problem. In this

problem each offensive target is aimed at a valuable asset of the defense. If it is not engaged

it destroys the asset with a given probability called the lethality probability. The defense

has a number of weapons with which to engage these targets. As before, the weapon-target

engagements are stochastic, and are quantified by kill probabilities. Values are assigned to

the assets and the defense must assign weapons to targets with the objective of maximizing

the expected total value of the surviving assets. Note that each asset may be attacked by

several offensive targets. Also, as before, each target may be engaged by several defensive

weapons (salvo attacks).

This model may be more applicable to the later stages of a conflict when the destinations

of the target:- are more precisely known. Note that in order to save an asset the defense

must destroy all of the targets aimed for it. Each of these targets mu,:t be attacked with

enough weapons so as to make the probability that one or more of them survives sufficiently

Ol J~l aVw•'U4UL, A ta 1O•, UVILCth del• i~ M•AaLD ~y FLLU IL4V~bU t:ILUUrJLL WeapoflS to Je V LU•I'-. dA-1f

the assets. Therefore the defense must decide which of the assets should be defended and

assign all of its weapons to the defense of these assets. No weapons should be assigned to

the targets aimed for tht other not-to-be-defended assets. This is known as a preferential

defense ntrategy (see for example Bracken et al. [17]).

In section 4.1 we will give a mathematical statement of the problem. Since this iroblem

107
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is a more general version of the Static Target-Based problem, then it is NP-Complete. In

section 4.2 we will consider the special case of the problem in which the kill probability

of each weapon-target pair depends solely on the asset to which the target is aimed and

the lethality probability of each target-asset pair is dependent solely on the asset. An

algorithm yielding suboptimal solutions will be presented for this problem. In section 4.3

we will consider the problem under the assumption of a single class of weapons. We will also

provide an algorithm for this problem which yields suboptimal solutions as well as a method

for obtaining an upper bound on the optimal value. In section 4.4 we will approximate the

Asset-Based problem by a Target-Based one. The solution methods of chapter 1 can then

be used to solve the approximate problem. In section 4.5 we will present some sensitivity

analysis results.

The key contribution of this chapter is the algorithm for providing suboptimal solutions

for the problem under the assumption of target dependent kill and lethality probabilities.

This is the best algorithm, that we are aware of, for this special case of the problem. The

algorithm also provides a method for obtaining an upper bound on the optimal value of

this special case of the problem.

4.1 Problem Definition

We will assume that the engagement of a target by a weapon is independent of all other

weapons and targets and that the impact of a target on an asset is independent of all other

targets and assets. We will also assume that all weapons are committed "simultaneously",

i.e. in a single stage. The following notation will be used. The definitions of all additional

notation may be found in Appendix A.

K dte=f the number of assets of the defense,

N ef the number of targets (offense weapons),

M lef- the number of defense weapons,

Gk d the set of targets aimed for asset k, k = 1,2,.... K,
def

nk the number of targets aimed for asset k, (i.e. lGkI), k = 2,,, K,
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def

Wk = the value of asset k, k = 1,2,..., K,
defpij = the probability that weapon j destroys target i if assigned to it,

= 1,2,...,N; j 1,2,...,M,

def
7ri = the probability that target i destroys the asset to which it is aimed, i 1, 2,..., N.

The decision variables will be denoted by:

1 if weapon j is assigned to target ixi = ~ 0 otherwise

The probability that targets I is destroyed is given by 1 - I'I x(1 - pij)r'. Therefore the

probaiility that asset k survives all targets aimed for it is given by IiTo, [1 7r

p,2 )Zii]. Hence we can state the problem as:

Problem 4.1 Thc: Static Asset-Based (SAB) problem can be stated as:

K M
max J-- •Wk fI(1-rirl-(1-pij)z"),
• {OE0'}} k=1 ieGh 1=1

subject to Zzi= 1, j= 1,2,. M.

The objective function is the sum over all assets of the value of the asset times the probability

of survival of the asset. The constraint is due to the fact that each weapon can be assigned

to only one target.

The solution to problem 4.1 provides us with an assignment of weapons to targets.

However, recall that it may be optimal to use a preferential defense strategy, i.e. lefend

some of the assets and leave the others undefended. This information canu he obtained from

the solution of problem SAB. From the soltition of SAB we can tell which of the assets

should be defended and how each of the defended assets should be defended. We will find

that the assets which are defended have large valueF and/or ha-'e few targets aimed for
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them. The assets which have few targets aimed for them will be assigned a small number

of weapons per target. If an asset has many targets aimed for it but has such a large value

that it is optimal to defend it, then we will find that many weapons per target will be

assigned to defend it. This must be done to ensure that the probability, that one or more

of the targets aimed for it get through, is small.

If exactly one target is aimed at each of the assets then probh'm 4.1 can be simplified

by assigning the value of the asset to its target and minimizing the expected total value

of the surviving targets. This leads to precisely the Target-Based WTA problem, which

means that the Target-Based problem is a special case of the Asset-Based problem. Since

the Target-Based problem is NP-Complete, then we conclude that the Asset-Based problem

is also NP-Complete.

The Asset-Based problem has proven to be significantly more difficult than the Target-

Based problem. The difficulty stems from the fact that, unlike the Target-Based problem

which had a convex objective function, the objective function of the SAB problem is neither

convex nor concave, Even if we assume that the kill probabilities are independent of the

weapons, the problem is still difficult. However, it has not yet been proven whether the

problem, under the assumption of weapon independent kill probabilities, is NP-Complete

or polynomial time solvable. I

'Recall that an optimal, polynomial time algorithm exists for the Target-Based problem when this as-
sumptioL, is made, Hence the Target-Based problem, under this assumption, is polynomial time solvable.

.-.- ~ - - -- - - - - -.. - - _ _ _ _
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4.2 Asset Dependent Kill and Lethality Probabilities

In this section we will assume that the kill probability of a weapon-target pair is dependent

solely on the asset to which the target is aimed. We will aiso assume that the lethality

probability rrk of a target is dependent solely on the asset to which the target is aimed. We

will denote the kill probability of a weapon on target i by pk, where k is the asset to which

target i is aimed. Let us denote the number of weapons that are assigned to target i by xi.

Problem 4.2 The Static Asset-Based Problem with Asset dependent probabilities (SABA)

can be stated as:
K

max J= ZWWk l (1-- rk(1- Pk)"'),
{xEZ+} k=1 iEaGk

N
subject to ,,i = M.

The optimal assignment of problem 4.2 has some important properties which we give in the

following theorems.

Theorem 4.1 If ;F is an optimal assignment for problem 4,.2 then

XC,, -- Xb• !5 1, V a, b E Gk, k= I,, K.

Proof: Pick any asset k and assume that xa > xb + 1 for some pair of targets a,b E. Gk.

Let J(,F) denote the value of this assignment. Now consider the assignment which is the

same as F' except that a single weapon is removed from target a and zissigned to target b.

If we use the notation eT = (0,. .. ,0, 1,0,...,0), then this assignment can be written as

S- e6 + eb. W e will denote the value of this assignm ent by J(F - e, + eb). W e have:

J(f)- J(i- ea eb) = WkrrkPk[( - Pk)"---(1 - Pk)Xb] (1 (1- P')') (4.1)
iEGk
__a,b
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Since x. > xb + 1 then thc right hand side of 4.1 is negative. Therefore,

d(;') - J(Y -- e" + Cb) < 0

This is a contradiction since the assignment Z was assumed to be optimal. z

This theorem states that, in the optimal assignment, the numbers of weapons assigned

to any two targets aimed for the same asset are either equal or differ by one. This result

can also be seen by using a symmetry argument. Theorem 4.1 can be used to simplify

problem 4.2 by introducing a new decision variable Xk which will be used to denote the

number of weapons assigned to all targets against asset k. Given Xk one can obtain an

optimal assignment by spreading the weapons evenly among the targets. We will let X

be the K-dimensional vector with elements Xk. Let us define Jk(Xk) to be the expected

surviving value of asset k if Xk weapons are assigned to its targets and these weapons are

spread as evenly as possible among the targets. Then,

- f2L-i X -fkLALJ L-IJ )-,&(1-ýL-J)-X
Jk(X) = Wk(1 - I•r(1 - Pk) nn"k• (1 - rk(l - Pk) L •)• (4.2)

We can now use equation 4.2 to simplify problem 4.2 to

Problem 4.3

K
max J= EWkJ,(Xk),

K
subject to E Xk = M.

k=!

Note that the objective function in problem 4.3 is separable. If each of the functions Jk was

concave then theorem B,1 could be applied to show that an MMR algorithm will produce

an optimal solution. Unfortunately, the funtctions Jk are not concave; but they do have

some important properties which we will exploit to deduce an algoritbm for problem 4.3.
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Figure A 1: An exam ple of the function J,, , the exp.ctc.. surviving value of aset k, for
ni. lO,pk 0.8,irk 0.9 and TVk = 1, vs. the total number of weapons msigned to
defend it, X.
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In figure 4.1 we have plotted an example of the function Jk for the case nk = lOPk =

0.8, rk = 0.9 and Wk = 1. Clearly it is neither convex nor concave. Note that between

multiples of nh the function is convex. This is due to the fact that the weakest link in the

defense of the asset is the target to which the least number of weapons is assigned. As a

function of multiples of nk, the function is first convex and then becomes concave. This

change occurs roughly at the point where the expected number of surviving targets is one

i.e. the value of X for which
.,.

nf'7rk(l - p) = 1.

These two propt,-ties can be stated formally as follows.

Pioperty 1: If L-vJ < X < rX] then

J.(X - 1)- 2J,(X) + Jk(X + 1) > 0.

Proof: Let us define
-- I -- r(1 - Pk) "l

and

r- 1- Wk(1 - Pk) L J

Note that

Jk(X + 1) = X)

and

Jk(X - 1) = Jk(X).

Therefore,
JýX -1) . k(X) + Jk(X-4- 1) = Jk(X)[- + 2]

= Jk(X)[a -2Jk() 2

>0,

which completes the proof. X
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Property 2: There exists an rk E Z+ such that for all r > rk,

Jk(nkr) - 2,lk(nk(r + 1)) + Jd(nk(r + 2)) < 0.

Furthermore, if rk > 0 then for all 0 < r < rk,

Jk(nk(r - 1)) - 2Jk(nkr) + Jk(nk(r + 1)) _ 0.

Proof: Note that

Jd(nkr) = Wk(1 -rk(1 - pk)r)nk.

Let Jk'(nkr) denote the second derivative of Jk(nkr) with respect to r. 'We have

J•'(nkr) = WknA.7rk(1 - Pk) r log2 (1 - pk)(! - 7rk( - pk)' )lk -2[nkrk(1 -- pk)r - 1].

Therefore if r < [-Lco1 J, then J4(nkr) > 0 and the function is convex. Otherwise1-. o(1-Pk) j

if r > Ž 10l ] then Jk'(nkr) < 0 and the function is concave. U

The first property says that the function .4 is convex between multiples of flk. The second

property says that the function Jk(rnk) is at first convex and then becomes concave.

If we approxirmate the function Jk by a concave function then the MMR algorithm,

applied to the approximate problem, will produce the optimal solution for the approximate

problem. We will approximate each of the functions Jk by its concave hull which we will

denote by J4. Note that, because of property 1, the line through the origin which is tangent

to the function Jk will touch at a point where X is a multiple of nk. Define ik E Z7. to be

"such that X = Iink is the point at which the tangent through the origin is tangent to Jk.

Next note that, because of property 2, 1k Ž: rk where rk is the point at which the function

Jk(rnk) changes from being convex to concave. This implies that the function Jk(rnk) is

"concave for r > 4k. These facts can now be used to obtain the concave hull .k as

(X)= ~Jk(nlk4) if X < nek (
( Jk(n[ixj)+(-L -i.-J)(Jk(,,k [-1)_- J(nk L-J)) if X > nkek________._) _ _k__k_ _k

6 &UMEM"W
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Figure 4.2: The hull Jk(X) of the function Jk(X) shown in figure 4.i. The dashed line is
Jk(X) and the solid line is fj(X).
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In figure 4.2 we have drawn the hull for the function that was plotted in figure 4.1.

The dotted line is the function Ak while the solid line is the function ik. Note that in this

example 4k = 2 and rk = 1. Secondly note that jk(X) is a good approximation of Jk(X) for

X > nkik. This fact will be used in obtaining bounds on the optimal value for the problem.

Consider, now the problem in which we replace the objective function in 4.3 by its

coiicave hull.

Problem 4.4 An approximation to problem 4.3 is given by:

K
<I 'fax J ZWk A (Xk),

K
subject to ZXAk = M.

k=-1

Note that theorem2 B.1 can be applied to this problem to conclude that the MMR algorithm

produces the optimal solution. Denote the optimal solution to 4.4, if an MMR algorithm is

used, by X . The assignment X has the following important property.

Property 3: For all but one of the assets k, XZ is a multiple of nk.

Proof: T'he proof will be by contradiction. Assume that the property does not hold.

This means that there exist at least two assets with the property that the total nam-

ber of weapons assigned to the targets aimed for them is not a multiple of the number

of targets aimed for them. For simplicity let us assume that two of these assets are

assets 1 and 2. Note that the function Jk is linear between multiples of ný. Therefore,

the marginal return of asset k is constant between multiples of nk. If the marginal

return for asset 1 on termination of the algorithm is greater than that of asset 2

then the weapons that were assigned to asset 2 would have been assigned to asset

'Note that in theorem B.1 a convex function is beivg minimized. The theorem can be applied to problem
4.4 by maximizing the negative of the objective function
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1 leading to a contradiction. Therefore the marginal return of asset 2 on termina-

tion of the algorithm must be greater than or equal to that of asset 1. If this is the

case, then, since the algorithm started assigning weapons to asset 2 then it would

have continued doing so until the number of weapons assigned was a multiple of n2

(i.e. until the marginal return for asset 2 changed value). This is a contradiction since

we assumed that the number of weapons assigned to asset 2 was not a multiple of n2. m

This property states the following. If an asset is defended, then the same number of weapons

is assigned to each of the targets aimed for the asset. Because the total number of weapons

is arbitrary, then it may not be possible to do this for all of the defended assets. Therefore,

the property may not hold for one of the defended assets. Let target v be the target for

which k, is not a multiple of nv, i.e the property is violated.

By examining 4.3 one can see that if X is a multiple of nk then Ak(X) = AM(X). Since

X; is a multiple of nk for all assets k except asset v then:

J( A�) J(XI ) + J(XII). (4.4)

Finally note that i(X) is an upper bound to J(X). Therefore, if we denote the optimal

solution to the original problem 4.2 by X" then

J(X) > J(X'). (4.5)

Furthermore since X is optimal for Problem 4.2 then

J(X*) > J(X ). (4.6)

Combining equations 4.4, 4.5 and 4.6 we obtain

J(X + ±(XZ) - J(X'*) > J(.X-) _ J(X) (4.7)

Therefore the optimal value of problem 4.4, the approximate problem, can be used to obtain

upper and lower 1 junds on the optimal value of problem 4.3.
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Notice that the solution to the approximate problem 4.4 is a suboptimal solution to the

original problem 4.3. The difference in value between the optimal and suboptimal solutions

is bounded by

J(Xa) - JX J(Xt) - J(XU ) (4.8)

Note that if J() J(!X), which would be the case if X,V is also a multiple of n, then

we obtain

J(X-) =J(X

which implies that X is an optimal solution to problem 4.3. In other words, if the total

number of weapons is such that for each defended asset the same number of weapons is

• ssigned to each of the targets aimed for the asset, then the algo ithm produces the optimal

solution.

Let us now consider the case in which J(X;) > J(Xt). In this case XZ is not a multiple

of n,,. By the nature of the MMR algorithm, if the number of weapons is increased by
n, r g."1 - fQ weapons, then the optimal solution to problem 4.4 will be the same except

that k; will be increased by the number of additional weapons making it a multiple of n,.

The analysis in the previous paragraph can then be used to show that the optimal solution

for the approximate problem is also optimal for the original problem 4.3. Similarly if the

number of weapons is dereased by Xt* - n, [f, j then the resulting optimal solution of the

approximate problem is optimal for the original problem 4.3 with the decreased number

*; of weapons. These results suggest that the optimal solution obtained for the approximate
i

probiem is close to being optimal for the true problem 4.3. We will now state our result as

Theorem 4.2 Consider the Static Asset-Basen problem in which the kill probability of a

weapon-target pair and the lethality probability of a target-asset pair is dependent solely on

the asset to which the target is i-,ned. Let X be the optimal solution to the approximate

problem defined in 4.4 obtained by the use of the MMR algorithm. Let Xk denote the optimal
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solution of the true problem (i.e problem 4.3) then

J(X) ± J(X;) - J(X,) Ž J(9) _ J(X)

Furthermore if we let
c= max max Jk(Xk)- Jk(Xk)

k {O<X<tknk)

then

J(X') - J(X') _ a.

Proof The first part of the theorem has already been proved. The second part is obtained

by upper bounding the difference J(XZ) - J(Xt) b; its maximum possible value. *

Note that e is the maximum over all assets of the maximum difference between the

function JA and its concave hull jk. Therefore E is dependent solely on. the shape of the

functions Jk. If we increase the size of the problem by in 'reasing the number of assets,

targets and weapons but do not change the types of assets so that E does not change then

we find that as the problem size increases, the percentage error of the suboptimal solution

decreases because a remains constant. Therefore, for large-scale problems we expect that

the algorithm will perform well.

Note that the bound - can be computed even before the problem 4.3 is solved by a

MMII algorithm. This provides an upper bound on the error of the suboptimal solution

that is obtained by the algorithm. However, after the appmoximate problem 4.4 has been

solved a much tighter bound is obtained by the difference 1(Xt) - J(X-,). Furthermore, as

we have shown, the solution can be mad optimal by slightly decreasing or increasing the

number of weapons.

4.3 A Single Class of Weapons

In the previous section we as:;umed that the kill and lethality probabilities were solely asset

dependent. In this section we will assume that there is a single class of weapons. hI other
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words the kill probabilities are weapon independent and the lethality probability is solely

target dependent. These assumptions are valid for the case of a single cluster of weapons.

Note that this is a more general problem than that of the previous section. We will present

an algorith- which yields a suboptimal solution for this problem which is similar to that

presented for problem 4.2. The following notation will be used. The definitions of all

additional notation may be found in Appendix A.

defK =ethe number of assets of the defense,

J N =' the number of targets (offense weapons),

M = the number of defense weapons,

defWk = the value of asset k to the defense, k = 1, 2,... K,

SGk t= the set of targets aimed for asset k, k = 1,2,...K,
i; :•clef

Snk the number of targets aimed for asset k, (IGkI), k = 1,2,.... K,

7ri = the probability that target i destroys the asset to which it is aimed, i = 1, 2, ... N,

def
Ai = the probability that a weapon destroys target i if it is fired at it, i = 1, 2,.... , N.

def

Xi = the number of weapons assigned to target i, i = 1,2,..., N,

the N-dimensional vecter [x1, . ., z,

Xk f the number of weapons assigned to the defense of asset k, (i.e. •eGk xi),
- def the K limensional vector 'X1, ... , XKjT.
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Under the assumptions we have made, the probability that an asset survives is the product

over all targets of the probability that the target is destroyed. We therefore have:

Problem 4.5 The Single Weapon Class Static Asset-Based (SSAB) problem can be stated

as:
K

max JV)= ZWk 1" (- i(1p- Pi)"),
S'EZ; k=1 iEGrk

N
subject to Zxi = M.

The objective function is the total expected surviving asset value and the constraint is

due to the fact that the total number of weapons fired must equal the number of weapons

available.

Because problem 4.5 is separable with respect to the assets, it can be re-formulated as

follows. Let Jk(X) denote the maximum expected surviving value of asset k given that X

weapons are used to defend it.

Problem 4.6 The subproblem (SUB) is defined by:

JA(Xk) = max Wk 1 (1 - •i(1 -pi)),

+ IEGk

subject to X= Xk.
iEGk

We can now restate the original problem.

Problem 4.7 The problem SSAB can be restated as (MAIN):

K

max J(O) = S Jk(Xk)
e+K k=1

subject to , Xk = M.
k: 1
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We will first consider the subproblems 4.6. The approach will then b3 the Same aZs in

the previous section. We will find the hull of Ak and then use an MMR 2igoi. hm on the

approximate problem in which JA, is replaced by its hull in problem 4.7. We will then show

that the solution of this approximate problem is a near-optimal solution to the true problem

4.7. Since the approach is identical to that used in the previous section, some of the details

will be omitted.

4.3.1 Solution of the Subproblern

Since the logarithm function is monotonic, if we replace the objective function of problem

4.6 by its logarithm then the optimal assignment of the resulting problem will also be

optimal for the original problem. If we take the logarithm of the objective function of SUB

we obtain

In Wk + E In[1 - ri(1 - pi)'i].

The first term is constant so we can remove it and optimize the second term. The opti-

I iization problem is:

max Y(.'k) Z ln[l - ri(I - pJ)X'], (4.9)
-Z+ iEGk

subject to Xi = Xk.
'1I iE G h

Note that the function .7t(ik) is separable with respect to the target index i. Next note

that each of the functions ln[1 - ri(l - pi)xi] is concave. ' 'his can be verified by showing

that the second derivative of this function (with respect to xi) is non-positive. Therefore,

the objective function Y" satisifies the conditions required to apply theorem B.1. Hence, a

MMR algorithm will produce the optimal solution. This solution will also be optimal for

problem 4.6.

We next need to obtain the concave hull of the function Jk. In the previous section this

task was easy because in that case the funciions J, bad two spe-ial properties which could

be exploited, (a) Jk is convex between multiples Of nk and (b) as a function of multiples

of nk the function is first convex and then concave. In this case however, the functions
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Jk do not have these special properties. The functions Jk in this section differ from those

of the previous section because the kill probabilities and lethality probabilities are target

dependent instead of asset dependent. Let us investigate how these two differences affect

the two properties (a) and (b) of the functions Jk in the previous section.

We will first investigate how the convexity of the function Jk(X) between multiples of

nk is affected when the values of the kill and lethality probabilities are allowed to be target

dependent. Our intuition implies that the variation in these probabilities should have a

smoothing effect on the function J.(X) which means that the function should be "less

convex" between multiples of nk.

We will first consider the effect on the function Jk(X) when the kill probability of a

weapon target pair is dependent only on the target. For this case we will assume that the

probability that a target destroys an asset is 0.9. We will show the effect for a range of

cases which are of importance to us.

The convex region with the largest curvature is the region nk :_ X < 2nk. We will

therefore examine what happens in this region. In order to solve the problem with target

dependent kill probabilities we will assume that the range of the kill probabilities is such

that the optimal assignment for the case of 2nk weapons is to assign 2 weapons to each of

the targets. Some simple calculations show that this is true for example if 0.65 .< pi p_ 0.90

for all targets i. Let the kill probability for the target independent case be p and let

the set of kill probabilities for the target dependent case be {pi}. We will choose {pj}

so that the expected surviving asset value for both cases are the same at X = nk and

at X = 2 nk. Let Jk(X) denote the maximum surviving asset value for the case of the

target independent kill probabilities and let Jk(X) denote it for the case of the target

depenlent kill probabilities. One can show that J.(X) Ž Ik(X) for nk. <: X < 2nk. Since

Jk(nk) - Jk(nk) and Jk( 2 nk) = Jk(2nk) (by the choice of {p;}) then this suggests that in

the region nk < X < 2nk the curvature of the function ik is less than that of the function

Jk.

Conuidcr the prublem of a single asset with W = 1, n 10 and 7ri = 0.9. In figure 4.3 we
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Figure 4.3: Maximum expected surviving value of an asspt with W = !o = 0, - 0.9
for target dependent kill probabilities (solid line) and target independent kill probabilities
(dashed line).
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Figure 4.4: Maximum expected surviving value of an asset with W = 1, -a = 10,pi = 0.8
for target dependent lethality probabilities (solid line) and target independr at lethality
probabilities (dashed line).

have plotted the maximum expected surviving value versus the number of weapons assigned

to its targets. The dashed curve is for the case of target independent kill probabilities

pi 0-.. ith bu Au uive ia for the case of target dependent kil probabilities {pi) =

[.7,.7,.7,.8,.8,.8,.9,.9,.9,.9]. In this case we chose the kill probabilities so that j(5n) ,

.7(5a). Note that there are still sections in which the function J is convex. However, the

overall effect is that the function i is "almost concave".

Let us now consider the case in which the kill probability of a weapon-target pai. is

independent of the target but the lethality probability of a target-asset pair is dependent
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on the target. Repeating a similar argument to the above, we again find that for the case of

target dependent lethality probabilities, the function Jk(X) is smoother than that for the

case of target independent lethality probabilities. This is illustrated in figure 4.4 where we

have considered the problem of a single asset with W = 1,n = 10 and pi = 0.9. We have

plotted the maximum expected surviving value versus the number of weapons assigned to

its targets. The dashed curve is for the case of target independent lethality probabilities

ri = 0.8. The solid curve is for the case of target dependent lethality probabilities {1r7} =

[.8, .8, .8, .9, .9, .9, 1, 1, 1, 1]. In this case we chose the lethality probabilities so that j(5n)

J(Sn). Note that the effect of target dependent lethality probabilities is again to smooth

the function. However, in this case the effect is less pronouziced than for the case of target

dependent kill probabilities.

Figure 4.5 illustrates the combined effect of having target dependent kill and lethality

probabilities. We considered the problem of a single asset with W = 1 and n = 10. The

dashed curve is for the case of target independent parameters, pi = 0.8,;ri = 0.9. The solid

curve is for the case of target dependent kill probabilities, {p1} = [.7,.7, .7, .8, .8, .8, .9, .9, .9, .9],

and target dependent lethality probabilities {fri} = [.8, .8, .8, .9, .9, .9,1, 1,1 1]. One can see

that unlike the dashed curve, the solid curve is almost concave. For all practical purposes,

the solid curve is concave in the region of a heavy defense. This implies that, in the case of

target dependent parameters, the addition of a single additional weapon to the defense of

an asset always has a significant effect. In the case of target independent parameters, if the

number of weapons assigned to the defense of an asset is a multiple of n then the addition

of a few more weapons has a negligible effect on the expected surviving value of the asset.

This means that, unless n more weapons can be added to the defense of the asset, no more

weapons should be added. In some situations it will not always be possible to assign a

multiple of n number of weapons to the defense of an asset, and so it is advantageous to

have target dependent parani ters (if feasible).

L~
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Figure 4.5: Maximum expected surviviug value of a unit valued asset versus the number of
weapons assigned to its targets for (a) target dependent parameters (solid curve) and (b)
target independent parameters (dashed ,'urve).
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4.3.2 Solution of the Main Problem

Let us define Jk to be the concave hull of the function Jk (defined in problem 4.6). We will

approximate problem 4.7 by its concave hull. This approximate problem can then be solved

to obtain a sub-optimal solution.

Problem 4.8 The approximate problem (APR) to problem 4.7 is given by:

K

max J(X)= i(X,)
.9,-+k=1

K
subject to Xk= M.

k=l

Since I is a separable concave function then theorem B.1 can be applied to show that the

MMR algorithm produces the optimal solution. Let X denote the optimal solu, 'on of the

approximate problem 4.8. By the nature of the MMR algorithm, we can show that fo:r all

but one of the assets

Jk(XkZ) = jk(Xf).

Let the asset for which this equality does not hold be asset v. Also let X* denote the

optimal solution to the true problem 4.7. Using the same analysis as in the previous section

we can then show that

Ax ) + J(X) - J(X0) > J(X 5 ) > J(X). (4.10)

Therefore the optimal solution to the approximate problem can be used to obtain upper

and lower bounds on the optimal value of true problem 4.7.

Notice that the solution to the approximate problem 4.8 is a near optimal solution to

the true problem 4.7. The difference in value of these two solutions is bounded by:

J(X-) - J(X) < 1(X,) J(xo). (4.11)

II
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If J(X')= J(Xf) then IX is optimal for 4.7. Also note that if J(X,)- J(.•), then by

slightly increasing or slightly decreasing the number of weapons one can obtain a problert

for which the solution to the approximate problem 4.8 is also optimal for the true problem

4.7. We now state our result as a theorem:

Theorem 4.3 Consider the Static Asset-Based problem in which the kill probability of a

weapon-target pair depends solely on the target. Let X be the optimal solution to the

approximate problem defined in 4.8 obtained by the use of the MMR algorithm. Let X'

denote the optimal solution of the true problem 4.7 then

J(X) + J(X*) - J(XZ) > J(YX) >_ J(X).

Furthermore if we let

c max max&<-d Jk(Xk) Jk(X)k (o5Xk<1k)"

then
J(X-') - J(.F) <_ 5

Proof: The first part of the theorem has already been proved. The second part is obtained

by upper bounding the difference J(X)-J( ) by its maximum possible value.

Therefore we can obtain a suboptimal solution X to the problem as well as an upper

bound on the optimal value. Furthermore, if the number of weapons is slightly increased or

slightly decreased then the algorithm produces the optimal solution for the corresponding

problem.

4.4 Approximation of the Asset-Based Problem by a Target-
Based One

ILi this section we will provide a heuristic for solving the Asset-Based problem. In this

heuristic, the objective function of the Asset-Based problem is lower bounded by a concave

function. If this lower bound is used as the objective function, then it can be shown that the

.................. ...... ......I... .... --. ..
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resulting problem is equivalent to a Target-Based problem. Algorithms for the Target-Based

problem can then be ased to solve the approximate problem.

The approximation that will be used is good in the case of a "strong defense" (i.e. a

defen,. , in which all assets are defended and, for each asset, the expected number of targets

which survive the weapon engagements is much less than one). For such a case the survival

probability of each of the targets will be small. Furthermore, all of the assets will be

defended. In the case of a weak defense the approximation will be good fbr the assets that

are defended, but bad for the assets that are left undefeiided. We will see that, because

of this, the algorithm will perform badly for problems which require a preferential defense

strategy.

Recall that the objective function for the Asset-Based problem is given by

K M

- Wk 1 (1 -rif(l -p,)x").
Stk=1 iCGh J=•1

If an asset is defended in the optimal strategy, then we know that sufficient weapons will

be assigned to its targets so as to make the probability that one or more of them survives

small. If this is the case, then for those targets we can assume that

Mi I(1-p~i)='i << 1.(4.12)

We can now use a binomial expansion of J to conclude that

KM

J Z- Wk1 - , Jri I1 - Pi )I].
k=1 iEGk j=1

Note that this approximation is only valid if the inequality 4.12 holds for all assets. This

means that all assets must be defended and the defense of each must be strong enough so

that the inequality 4.12 holds for all targets. Therefore for many practical problems this

approximation may not be appropriate. For each target i E Gk, let its value be that of the

associated asset, i.e. Vi = Wk. The approximation to J can be written as

K N M
SE Wk - T

k='1- i=1 l
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Therefore, it is easy to see that, the Asset-Based problem with this approximation as the

objective is equivalent to a Target-Based problem with the same targets and kill probabilities

and with target values given by Voi. In other words, the value of a target is the expected

destroyed value of the asset to which it is aimed if the target is not engaged, but all other

targets aimed for that asset are destroyed. Therefore, targets which can potentially do a

lot of damage are assigned large values.

Note that this approximation is a lower bound to the true objective function whereas

the approximation that was made in section 4.3 (i.e the concave hull approximation) was

an upper bound. Let us illustrate this approximation by a simple example. Consider the

case of 10 identical assets each of unit value and each having 10 targets aimed at it. Let us

assume a single kill probability for all weapon-target pairs and a single lethality probability

for all targets. We will use the values: p = 0.8, "r = 0.9, n = 10 and W = 1. Note that in the

optimal strategy for the approximate problem the weapons assigned to the defense of an

asset are spread as evenly as possible among the targets. This is because all targets will be

assigned the same ialue Vi = 0.9. This is also the optimal strategy for the true problem. The

decision variables are therefore the number of weapons that must be assigned to the defense

of each of the assets. This decision will depend on the shape of the function J(X) which

is the expected surviving value of the asset if X weapons are assigned to its defense. Let

J(X) denote this function for the true objective and let i(X) denote the approximation. In

figure 4.6 we have plotted the true function J(X) as well as the lower bound approximation

J(A). Note that the approximation is only good in the region X > 20. Therefore the

approximation is poor for the assets that are not defended.

This approach of approximating the Asset-Based problem by a Target-Based one has the

advantage that methods that have already been developed for the Target-Based problem can

be used to solve it. However, this particular approach has a serious disadvantage. Consider

again the problem above. Let us assume that the defense has 100 weapons. The optimal

solution3 to this problem is to defend 5 of the assets with 20 weapons each. This results

3The optimalI solution to this problem can be obtained with the algorithm described in section 43
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Figure 4.6: The niaximum expected surviving value of an asset (solid line) vs. the niumber
of weapons assigned to its defense for the case W 1, it 10,p 0 .8, ir =0.9. The dasbed
line is the lower bound approximation.
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in an optimal value of 3.465. On the other band the optimal solution for the approximate

problem is to assign a single weapon to each of the targets. This results in an expected

value of 1.374. Therefore the value of the solution for the approximate prob1 rn is roughly

40% of that of the optimal value. We can therefore conclude that the method described in

this section may perform badly on certain problems. In particular the algorithm performs

poorly on problems which require a preferential defense strategy.

The analysis of this section was performed to illustrate the fact that "reasonable" heuris-

tics may misbehave when applied on certain problems. This fact supports our belief that

one should not design algorithms based solely on intuition. Algorithms should be supported

by analytical results. The aim of our research is to provide these analytical results which

can then be used as a basis for heuristics.

4.5 Sensitivity Analysis

In this section we will present some sensitivity analysis results. These results will help us

decide the importance of the role of each of the parameters in the optimization problem.

This information will be useful in determining how accurately each of the parameters should

be measured.

4.5.1 Optimal Value Sensitivity Analysis

W! will present sensitivity analysis resilts in this subsection for the case of a single kill

probability and a single lethality probability. The following baseline problem will be used:

Baseline Problem Definition

Number of weapons: M = 200,

Number of targets: N = 100,

Number of assets: K = 10,

Number of targets aimed at each asset: k = 10, k = 1,..., 10,

Value of each asset: Wk z- 1, k = 1,... 10,

Kill probability of each weapon-target pair: p = 0.8,
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Lethality probability of each target: 7r = 1.

We will vary the parameters p, 7r, M and nk individually and see how the optimal value

of the problem changes. As we vary the kill probability p we will denote the optimal value

by J(p). Similax notation will be used for the other parameters. Since we do not have an

algorithm that guarantees optimal solutions for the problem, we will compute upper and

lower bounds on the optimal value. The algorithm presented in section 4.2 will be used to

compute a solution to the problem as well as an upper bound on the optimal value. The

expected value of the sub-optimal solution will be plotted with a solid line. The upper

bound will be plotted with a dashed line. The plot for the optimal value will lie between

these plots. Note that for some of the plots the algorithm produces the optimal solution.

In these cases no dashed curve will be visible.

In figure 4.7 we have four plots. In plot (a) the upper and lower bounds on the optimal

value is plotted versus the kill probability p which is the same for all weapon-target pairs.

Note that the dashed curve is almost identical to the solid curve. This means that the

solution produced by the algorithm is almost optimal for all values of the kill probability.

Also note that for the values of interest to us (0.5 < p _ 0.9) the optimal value is very

sensitive to the kill probability. Small increases in the kill probability can result in large

increases in the optimal value,

In plot (b) the optimJ value is plotted versus the lethality probability 7r. Note that

there is no dashed curve because the solution was optimal. Here we find that the optimal

value decreases almost linearly with the lethality probability. It therefore appears that the

lethality probability does not play an important role in the optimization problem.

In plot(c) we have plotted the optimal value versus the number of weapons for M =

100, 150,200,250,300. For these values of M the algorithm produced the optimal solution.

We find that the optimal value increases almost linearly with the number of weapons.

In plot(d) the upper and lower bounds on the optimal value is plotted versus the number

* of targets aimed for each of the assets. We kept the weapon-target ratio fixed at 2:1. A.gain

* !note that the algorithm is optimal for most of the plot. Here we find that the plot appears

__ _ __ _
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Figure 4.7: Upper and lower bounds on the optimal value for the baseline problem, as a
function of (a) the kill probability (b) the lethality probability (c) the number of weapons
and (d) the number of targets aimed for an asset (with M = 2N).
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to be that of a piecewise-linear convex function. We also find that as the number of targets

aim-d for each asset increases, the optim&l value decreases. This implies that, if the number

of assets is kept fixed then as the size of the attack increases (i.e nk increases for each k)

the defense's arsenal must be increased at a greater rate to maintain the same level of

performance. This gives the offense a tremendous advantage because, if we keep the kill

and lethality probabilities fixed, then a small increase in the offense's arsenal has to be

countered by a larger increase in the defense's arsenal if the defense wishes to maintain the

same level of performance.

4.5.2 Optimal Solution Sensitivity Analysis

In the previous sivbsection we considered what happens to the optimal value as various

problem parameters were varied. In this section we will see what happens to the optimal

solution of the problem as each of the parameters is varied. We will first present some

analytical results and then some numerical results.

Let us assume that all weapon-target pairs have a kill probability of p and that all

targets have a lethality probability of r. We will also assume that the number of targets n,

aimed for an asset, is the same for all assets. Finally we will assume that all assets have a

value of unity. Since we do not have an optimal algorithm for the problem we will consider

the solution produced by the sub-optimal algorithm presented in section 4.3. Because of

the nature of the algorithm and the uniformity of the problem being studied, the solution it

produces will have the property that all but one of the defended assets will be defended by

the same number of weapons. The number of weapons assigned to the other defended asset

will be less than or equal to the number of weapons assigned to the others. Because of this

property, a more convenient way to state the solution is in terms of the number of assets

defended. Given this information one may then compute the optimal number of weapons

to be assigned to each of the targets.

We will compute an approximate value for the number of assets defended in the solution

of the algorithm. For k E Z+, let J(kn) denote the expected surviving value of an asset if
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k weapons asre assigned to each of the targets aimed for it. Note that since all assets are

identical then this function is the same for each. We have

J(kn) = (1 - r(1- p)k).-

Define I E Z4 as follows:
J(tn) J(kn)

-- = max---£ Ic k

In other words the tangent to J(nk) through the origin touches the function at the point

k = t. Note that, because all assets are identical, the value of t is the same for all. The

MMR algorithm will assign nt weapons to the defense of each of the defended assets but

one. The remaining weapons will go to the other defended asset. Therefore the number of

defended assets, which we will denote by d, is given by:

Md=

If d is not integral then Ad] assets will be defended with In weapons each and another asset

will be partly defended with the remaining weapons. Recall that the functiorL J(kn) is at

first convex and then becomes concave. If we relax the constraint the k is integral then we

can find the point at which J changes from a convex to a concave function by fincding the

point at which its second derivative changes sign (from positive to negative). Setting the

second derivative to zero we find that this change occurs at the point k given by

= --- log(nr)

log(1 - p),

in other words the value of k, k, at which this occurs satisfies the equation

nr(l _ p)k = 1.

Note that nr(1 - p)A is the expected number of surviving targets if k weapons are assigned

to each of the ta.rgets. This implies that if the expected uiumber of surviving targets is

grt ater than one then the objective function is convex otherwise it is concave. Note that,

in general, kc is non-integral so we need to say that J(nk) is convex if k < [kLJ -.nd it is
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concave if k > Fkl. Therefore a good approximation for the value of I is [ki. Using this

approximation we have
M

d Me. n (4.13)

Note that ifd d> K then all of the assets are defended. Let us consider an example. Coil ider

the following problem: M = 200,N = 100,K = 10, V = 1, n = 10,p = 0.7,7r = 0.8. The

solution obtained by the sub-optimal algorithm is to defend all assets with 2 weapons per

target. Using oua approximation we find d t 10; so that in this case the approximation is

good. Note that d varies linearly with M, it varies roughly inversely with N, it increases

as " decreases, and it increases as p increases. All of the results are as we would expect.

This approximation provides us with a simple estimate of the optimal strategy of any given

problem.

We will next examine how the solution of the algorithm presented in secti, ,i 4.2 varies

with different parameter values. Note that in subsection 4.5.1 we considered the sensitivity

of the optimal value to changes in the parameter values. Here we are considering the

sensitivity of the optimal solution. We will use the same baseline problem that was used in

subsection 4.5.1. Because of the symmetry of the problem, the solution can be completely

characterized by the number of defended assets. Note that in the solution to the problem,

the same number of weapons is used to defend each of the defended assets except one. The

number of weapons assigned to this special asset is less than the number assigned to each

of the others. We will include this special asset, as a fraction, in the number of assets

defended. This fraction is the ratio of the number of weapons assigned to defend the asset

and the number of weapons assigned to each of the other defended assets. In figure 4.8 we

have plotted the number of defended assets vs each of the parameters p, 7r, M and n.

In plot (a) of figure 4.8 we have plotted the number of defended mssets versus the kill

probability. Note that small changes in the kill probability can result in significant changes

"in the strategy. Plot (b) contains the plot for the lethality probability. Here we find that

changes in 7r do not affect the optimal strategy. This suggests that the lethality probability
plays a small role in the optimization problem. Plot (c) contains the plot for the number

I Jill --- "i i - i
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Figure 4.8: Number of defended assets as a function of (a) the kill probability (b) the
lethality probability (c) the number of weapons and (d) the number of targets aimed for
each asset (with M = 2N).
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of weapons. As the number of weapons increases more assets are defended until they are

all defended. Plot (d) contains the plot for the number of targets per asset with a fixed

2:1 weapon to target ratio. Note the sudden change in the defense strategy as Ik changes

from 12 to 13. For the case nk = 12 the defense assigns two weapons per target to defend

its assets. However, for the case 7k = 13, two weapons per target is not enough so it has

to start using three weapons per target for 6 of the assets and two weapons per target for

one of the assets (which will be included as a fraction of 2/3). Therefore the defense only

defends 62 assets.

SI 4.5.3 Asset Value Sensitivity Analysis

In this thesis we do not plan to address the question of how the various parameters (Piy, W4

etc.) of the problem are obtained. However, in deciding values for these parameters one

should have an idea of the ranges within which they should lie. For example, if the spread

of the asset values is small then the solution of the resulting problem might be the same

as the solution of the problem in which all asset values are equal. If such is the case, then

either all assets can be considered as having the same value or one must increase the spread

in the values to reflect the fact that some assets are of greater value than others. If, on

the other hand, the spread of the asset values is large, then the solution of the resulting

problem will be such that no weapons are assigned to the assets of low value. If such is the

case, then either the low valued assets could be removed from the problem to decrease its

size, or if one really wants to consider these low valued assets as a part of the problem, then

the spread in the values should be decreased. This example suggests that there is a range

within which th, values should be assganed if the n soluti.on is to be meaniful

this section we will compute such a range for the asset values for a simple problem.

We will investigate the sensitivity of the optimal assignment of a ,tatic Asset-Based

problem to changes in the asset values. We will consider the case of two assets under the

assumptions that each is attacked by n targets and that the kill probability of each weapon-

target pair is p and that the lethality probability of each target is 1. We will also assume
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that the value of one of the assets is unity while that of the other is W with W > 1. This

last assumption does not restrict the class of problems considered since the values of the

assets can always be scaled so that the smaller valued asset has a value of unity. We are

interested in the value of W above which only one asset is defelnded (the asset of value

W) and below which both of the assets are defended. We will assume that the number of

weapons is a multiple of n (i.e. M = Kn).

The optimal assignment for this problem has the property that the optimal number

of weapons assigned to the defense of each of the assets is a multiple of n. This can be

shown as follows. Between multiples of n the expected surviving value of an asset is convex

(see section 4.2). Therefore, for all but one of the assets, the number of weapons assigned

to the defense of the asset must be a multiple of n. Since Al is also a multiple of n

then the number of weapons assigned to the other defended asset must also be a multiple

of n. Therefore the property holds. Let, this multiple be x, for the higher valued asset

and K2 for the other. Since W > I the possible optimal values of the pair (nj, K2) are

(,0),(r, - 1,1),... ,(FK1/21, LK/2J). Let W, denote the value of IW at which the solution

(K, 0) changes to the solution (x( - i, i). We have,

W (1 - (1 -P)
(1 -(I _ p)",)n _ (I - (I1 - p)•-i)n•

The value of W at which the defense's strategy changes from defense of one asset to the

defense of both assets will be the maximum, over i, of Wi.

W"7* = max Wi. (4.14)0<i< i,,,/2j

For values of p close to unity, and/or for small values of it, a reasonable approximation that

can be made is the following:

(1 -(1.- p)'-I)' ; 1 -n(I - p)' V < i < L,/2.

Using these approximations we have that:

( .(l -p)I)



CHAPTER 4. THE STATIC ASSET-BASED PROBLEM 143

Let us take i to be a continuous variable and set the derivative of Wi, with respect to i,

to zero. This leads to the equation n(1 -- p)' = 1, One can show that this is the only

stationary point and that the function is concave in the region around this stationary point.

This leads to the conclusion that the value of i satisfying this equation is the point at which

the function is maximum. Substituting back into the equation we find that
(1- )1--

00( --*)

If we make the approximation (1 - 1/n)'Y ;• e-' then we have

1
en'(I - p),

If we assume that r. is even and that the weapons are divided evenly between the two assets

then the expected number of targets which survive in each asset is given by C = n(I - p).

We can write W" .z: (e: 2)-'. Therefore as the expected number of surviving targets

decreases, the ratio of the asset values above which a single asset is defended, increases,

Also note that if £ > i 0.6 that it is always optimal to assign weapons only to the

higher valued asset.

Table 4.1 contains the exact values of W" for the case of M = 4n (ic a. 2:1 weapon to

target ratio) for various values of p and n. Table 4.2 contains the values obtained by using

the approximation [en 2 (1 - p)4]- 1.

The results in tables 4.1 and 4.2 sugge::t that our approximation to W* is a good one

for the problems which are of interest to us. If this is the case then it implies that the factor

which determines the range of the asset values is the expected number of surviving targets

f tLh defeinse attempts Lo save both assets. The expected number of surviving tar',ets is

called the target leakage in the literature. Therefore the number of assets defended should

be such that the resulting target leakage is sufficiently small.

4.C C3ncluding Remarks

In this chapter we presented the Static A.iset Based WTA pioblem as well as a sub-optimal

algorithm for solving it under the assumption of target dependent kill and lethality probabij-

_ _ _ _ _ _ _ _"_....__i _ _ _ __ I
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p=0.6  p=0.7 p=o.8 p=O.9
n = 2 4.9 13.2 50.3 450
n = 4 1.2 3.4 16.2 182
n = 6 1.0 1.4 6.9 99
n = 8 1.0 1.0 3.4 60

n = 10 1.0 1.0 2.1 39
n= 12 1.0 1.0 1.6 26
___14 1.0 1.0 1.3 18

Table 4.1: The value of W above which only one asset is defended. M - 4n

p=0.6 p=0.7 p=:o.8 p=0.9
n = 2 3.6 11.3 57.5 920
n = 4 1.0 2.8 14.4 230
n = 6 1.0 1.3 6.4 102
n = 8 1.0 1.0 3.6 57
u= 10 1.0 1.0 2.3 37
n = 12 1.0 1.0 1.6 25
n = 14 1.0 1.0 1.2 19

Table 4.2: The value of W above which only one asset is defended using the approximation
[en 2(1 _ p)4]- 1 .

ities. Computational experimentation suggests that the solution produced by this algorithm

is either optimal or near optimal for most problems. We also presented some sensitivity

analysis results which will prove helpful in choosing parameter values for the problem.

The main conclusions that can be drawn from the results of this chapter are as follows:

9 The general problem is difficult because it is a more general version of the Static

Target-Based problem which has been shown to be NP-Complete [2].

e In the case of a single class of weapons the algorithm that we have proposed (in section

4.3) provides near-optimal solutions. We conjecture that, if this approach is used as

a heuristic for the ca e of multiple weapon classes then the resulting solution will also

be near-optimal.

o The optimal value and optimal solution of the problem is quite sensitive to changes in

the kill probability, but appears to be insensitive to change:; in the lethality probability.

a If the number of assets, and the kill and lethality probabilitiesi are kept fixed then,

i__ _ __ _ _ _ _ _ _ _ _ _ _ _ _ I•



CHAPTER 4. THE STATIC ASSET-BASED PROBLEM 145

as the number of offense weapons increases, the number of defensive weapons must

increase at a greater rate if the defense wishet, to maintain the same level of perfor-

mance.

The efficient solution of static Asset-Based problems will require the use of parallel

coputers. Therefore, it will be necessary to investigate parallel algorithms for solving the

problem. Also the information and computers needed to solve the problem may be ge-

ographically dispersed. This suggests the use of distributed algorithms for the problem.

Some preliminary work in this area can be found in [18] and [19].



Chapter 5

The Dynamic Asset-Based
Problem

In this chapter we will consider the dynamic version of the Asset-Based WTA problem.

Recall that the Target-Based WTA problem, discussed in chapter 3, is a special case of

the Asset-Based Problem in which a single target is directed at each asset. Also all static

problems are special cases of the corresponding dynamic problems. Therefore the three

previously studied problems, the Static Target-Based WTA problem, the Dynamic Target-

Based WTA problem and the Static Asset-Based WTA problem are all special cases of

the Dynamic Asset-Based WTA problem. Hence, this problem is the most difficult and

complex because of its generality. However, it is also the most important because of its

generality. Simplifying assumptions are needed to reduce the complexity so as to derive

efficient suboptimal algorithms.

We will make the assumption that the kill probability of a weapon-target pair and the

lethality probability of a target-asset pair depend solely on the asset to which the target is

directed. Under these a ,umptions the number of decision vai~iabies per stage equals the

number of assets. Without these assumptions the number of decision variables per stage

equals the product of the number of available weapons and the number of surviving targets.

Therefore, the assumptions greatly reduce the dimensionality of the problem.

These are restrictive assumptions which will be violated in most practical problems. If

the assumptions do not hold the solution method described in this chapter call still be ap-

1,16

7- ---
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plied after some modifications have been made. There would, however, be a degradation in

the performance of the method. This degradation would vary with the degree by which the

assumptions are violated. Furthermore, in a practical situation, if each defensive weapon

cannut engage all offensive targets the dynamic strategy will lose some of its performance

advantage over the static strategy. Therefore, although we will conclude that the perfor-

mance advantage of the dynamic strategy is roughly twice that of the static strategy, in

practice this performance advantage will be less.

In section 5.1 we will define the general problem and discuss its complexity. In section

5.2 we will give a mathematical statement of the problem under the assumptions of asset

dependent kill and lethality probabilities. Because of the extreme complexity of the problem,

we will only consider the case of two stages. We will show that, under the assumptions

made, the decision variables are the number of weapons to be used in the first stage and

the optimal assignment of these weapons. In section 5.3 we will discuss the problem of

finding the optimal number of weapons to be used in stage 1. We will find that this is a

difficult problem because of the presence of multiple local maxima. In section 5.4 we will

assume that the optimal number of weapons to be used in the first stage is known and

discuss the problem of finding the optimal assignment of these weapons. We will present a

sub-optimal algorithm for this problem. In section .5.5 we will provide a heuristic based on

approximating the Asset-Based objective function by a Target-Based one. This approximate

problem can then be solved by the methods presented in chapter 3. We will find that the

main shortcoming of such an approach is that it cannot produce a truly preferential defense

strategy. In section 5.6 we will present several numerical results. We will find that, in

general, a dynamic strategy outperforms a static one by a factor of two. Finally in section

5.7 we will make some concluding remarks.

5.1 Problem Definition

As in the case of the Dynamic Target-Based problem, this problem consists of a number

of time stages. In each stage the results (survival or destruction of each target) of the

'--- . .. . i.. . ..A( . .
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engagpments of the previous stage are observed. Based on these observations, a subset of

the remaining weapons is chosen and assigned to the surviving targets. The results of the

engagementb of this assignment is then observed arid the process is repeated. Hence we

are dealing with a "shoot-look-shoot-..." strategy. The objective is to choose and assign

weapons at each stage so as to maximize the total expected value of the surviving assets at

the end of the final stage of the engagement. Note that the problem will be re-solved after

each stage because the resalts of that stage can be observed. This means that one is only

interested in obtaining assignments for the present stage. By the principle of optimality, it

is implicitly assumed that optimal assignments will be used in all subsequent stages.

We will first dehne the general problem. In the next section we will consider the special

case of two stages under the assumptions that the kill probability of a weapon-target pair

depends solely on the asset to which the target is directed, and the lethality probability of

a target-asset pair depends solely on the asset. The foliowing notation will be used. The

definitions of all additional notation can be found in Appendix A.

K .t the number of defense assets,

T the number of time stages,

N 1e_ the initial nmber of targets,
del -

M = the total number of weapons,

Wk - the value of asset k, k = 1,2,...,

Gk = the set of targets aimed for asset k initially, k 1,2,..., K,

"k't&(f= the number of targets aimed for asset k in stage t, k = 1,2,..., K,

pij(tef tuh probability that weapon j destroys t trget i in stage t if assigned to it,

i =1,1...,N, j=1,2,..., M,
def

Ti the lethality probability of target i on the asset to which it is aimed,

2=,2..., ,N .

The decision variables will be denoted by:

= 1 if weapon j is assigned to target i in stage 1zq = 0 otherwise
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Note that we only need to solve for the decision variables in stage 1. The decision vari-

ables for all subsequaent stages will be obtained after the outcome: of the weapon-target

engagements of the previous stage is observed.

The target state of the syst, m at the end of the first stage will be defined as the set of

surviving targets. This state will be denoted by an N- dimensional binary vector 6I E {O, 1 }N

and represented by

{ I if target i survives stage I
u = 0 if target i is destroyed in stage 1.

The weapon state of the system at the end of sta6e one will be defined as the set of available

weapons. This state will be denoted by an M-dimensional binary vector i0 G {0, 1QM and

represented by:

j I if weapon j was not used in stage 1,{ 0 if weapon j was used in stage 1.

The target state evolves stochastically. The stochastic evolution of the target state in

stage 1 depends on the assignment decisions made in stage 1. Given a first stage assignment

of {xij}, the state at the start of the second stage is an N-dimensional random vector.

The probability that ui is 1 is the probability that target i survives the first stage. The

probabiliy,, that ui is 0 is the piobability that target i is destroyed in the first stage. The

distribution of the random variable ui is therefore given by:

Al

Pr[ui = k] =-- k lI(1 - pij( 1 ))Xt + [1 - kJ 1 - HO - pij(1), (5-1)
j=l j=l

for k=0,1, i=1,2,...,N.

Equation 5.1 will be called the target state evolution of the system.

The c-.,olution of the weapon state is deterministic and depends on the assignments made

in the first stage. The evolution is given by:

N

wj = 1 - Exij, j = 1,2,....,AM. (5.2)
i=1 1

This simply says that weapon j is available in the second stage if and only if it is not used

in the first stage. Equation 5.2 will be called the weapon state evolution of the system.

_ _ _ _ _
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We will let J;(9, Z) denote the optimal value of a T - 1 stage problem in which the

initial target state is d and the initial weapon state ti. This problem has the same form

as the T stage problem which is being defined. The 7-- 1 stage problem can be defined in

terms of the optimal values of T - 2 stage problems etc. The T - (T - 1) or single-stage

problem can be defined in terms of the optimal values of O-stoge problems. If the target

state at the end of the final stage is il and the weapon state at the end of the final stage is

tF (which would be [0,... 0] for an optimal strategy) then the optimal value of the 0-stage

problem is given by
K

-lJj(f', IF) = EjJWk rJ (1 -TO
k=1 iEGk

In other words this it; the value if no more weapons are assigned and, targets which have

been destroyed have a lethality probability of 0 while each target i which survived all stages

has a lethality probability of 7ri. We can now state the problem as follows.

Problem 5.1 The Dynamic Asset-Based problem (DAB) can be stated as:

Milt -1 = J Pr[iZ = O]J2(&, 0)

subject to xij E {O,1), i = 1, 2,... ,N j =,2,... M,

N

with wj I - x j,

The objective function is the sum over all possible stage 2 target states of the probability of

occurrence of that state times the optimal value given that state. Note that the distribution

of the stage 2 target state and the stage 2 weapon state both depend on the first stage

assignment. The first constraint restricts each weapon to be assigned t most once in the

first stage. The second constraint is due to the weapon state evolution.

This problem is considerably more difficult th.i- the static one. This can be illustrated

by attempting to use a straightforward dynamic programming approach to the problem.



CHAPTER 5. THE DYNAMIC ASSET-BASED PROBLEM 151

Let us consider a two stage problem. The number of possible weapon subsets that can be

chosen in the first stage is 2". If rn1 weapons are used in stage 1 the number of possible

assignments that must be checked is Ntm1 . If Ný of the N targets are engaged in the first

stage the number of possible outcomes is 2Ný. If N of the N targets survive stage 1 and

Mn2 weapons are available in stage 2 then the number of assignments that must be checked

to obtain the optimal value for this outcome is X"N2. These numbers show the enormous

number of computations that will be required if a straightforward dynamic programming

approach is used. Note that to simply evaluate the expected value of a first stage assignment

requires a tremendous computational effort. Besides the problem of dimensionality there

is also the difficulty of solving the static problem in the last stage. Several of these static

problems must be solved corresponding to the different possible outcomes. Recall that the

objective function for the static problem was neither convex nor concave. Since there are no

efficient algorithms for obtaining the optimal value of the static problem, we cannot even

evaluate an arbitr;.ry assignment for the dynamic problem. These difficulties have forced us

to make some simplifying assumptions. We believe that this simplified problem will reflect

the overall behaviour of the more general problem.

5.2 The Two-Stage Problem with Asset Dependent Kill and
Lethality Probabilities

Because of tremendous complexity of the general version of the problem we will make

some simplifying assumptions. We will only consider the case of two stages since the com-

plexity of the problem grows exponentially with the number of stages. We will make the

assumption that the kill probability of a weapon-target pair depends solely on the asset to

which the target is directed. Therefore the kill probability of any weapon on a target aimed

for asset k will be denoted by Pk. We will also assume that the lethality probability of a

target-asset pair depends solely on the asset. Therefore the lethality probability of each of

tbe targets aimed for asset k, will be denoted by 7rk.

Because of the assumption of weapon indepeiident kill probabilities, we can let the deci-

I _ _ - - --i- .-7 i , - - i ir
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sion variables be the number of weapons assigned to each target in each stage. Furthermore

the assumptions imply that all targets directed to a specific asset are identical. Therefore,

in each stage, the number of weapons asigned to any two targets aimed for the same asset

cannot differ by more than one. In other words the weapons assigned to defend an asset

in a stage must be spread as evenly as possible among the surviving targets aimed for that

asset. This result can be used to simplify the problem even further by defining the decision

variables as the number of weapons assigned to defend each asset in each stage. We can

therefore let the decision variables be ml, the number of weapons to be used in stage one,

and X E ZK the assignment of these m, weapons in stage 1, where Xk represents the num-

ber of weapons assigned to defend asset k in stage one. The individual target assignments

can be obtained by spreading these weapons as evely as possible among the targets aimed

for asset k.

Our assumptions can also be used to simplify the representation of the target state.

Since all targets directed to a specific asset are identical then we can represent the target

state by f(2) where nk( 2 ) is the number of targets aimed for asset k that survive the first

stage.

The state it(t) of the system evolves stochastically. This evolution depends on the

weapon assignments made. Because we assumed that the engagement of a target by a

weapon in a stage is independent of all other engagements in all stages then, given an

assignment for the first stage, the state nk( 2 ) of asset k evolves independently of all other

assets. The state for each asset evolves as follows. To simplify the expression we have left

out the subscript k from the variables nk('),pk('),q,:(').

Pr[n(2) = jIX = X] = (5.3)
= •(x-n()L.-•J) q(1)r.-Yl[l q(l)f l]xf-(I)L;T-J-t×7

/n(1)~#iI+ n(1) X

for

= 0, 71. (1).
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where

-maxUj+X-n(1)( + 1),O} and min{X - n(1)[-ljJ

This evolution can be explained as follows. If Xk is a multiple of nk(1) then nk( 2 ) is a

binomial random variable with success probability' (1 -Pk(l)) KI(1). If Xk is not a multiple

of nk(1), then some targets will be assigned I -Yj weapons while the others will be assigned

rF--] weapons. The distribution of the random variable nk(2) is obtained by convolving

two binomial distributions. The success probability of one of th(,se distributions is given by

(1 - A(1)) while the success probability of the other is given by (1 p(1))l"#T. The

variables ý and i were introduced to take care of the boundary conditions of the convolution.

Let Jj(i!(2),M) denote the optimal value of the second stage problem with target state

ii(2) and M weapons. Also let 8 denote the set of all possible outcomes of the first stage

8 = JWEZ'ýJl E 10, 1, .... lk1)1

We will state the two-stage problem in terms of the optimal values of single stage problems.

The single-stage problem is simply a static problem. However, we can use the same recursive

definition that was used for the two-stage problem to define the single-stage problem in terms

of optimal values of 0-stage problems. Note that in the op.imal strategy no weapons will

be available after the second stage. Denote the target state after stage two, the final stage,

by il(3). The optimal value of the 0-stage problem is given by:

K

J;(ii(3),0) = Wk(1 - 7rA)k(°).

'See Appendix A for the definition of a binomial random variable as well as the term succems probability.

i . . . . . . .. . . . .. .. . . - . . - .. . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . .. . .
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In other words J; is the total expected value of the surviving assets if the target state is

6(3) and no more weapons are fired.

Problem 5.2 The Two-Stage, Dynamic, Asset-Based (TDAB) problem with esset depen-

dent kill and lethality probabilities can be stated as:

mraxl 1 = Pr[iT(2) = s1J2 (, M - mi)

subject to Xk E Z+, k =
K

and E Xk = ml.
k=1

One can see that even the statement of the problem is a formidable task even under the

ai:•umption that the kill and lethality probabilities are solely asset dependent.

By the principle of optimality, the assignments used in the second stage must be optimal.

Therefore, the only decision variables over which the objective function is to be 'ptimized

are mi and A, which is the number of weapons to be used in the first stage m: and the

assignment of these weapons to assets X. We will therefore denote the optimal value for

the case in which m, weapons are used in the first stage with a:;signmeitt X by J1 (m,, X,).

Problem 5.3 The Dynamic Asset-Based problem may also be stated as:

max I max 1h (rna ,X) I
MICZ+ t'Ez4 J

K

subject to X X= mi,
k=1

and 0 < In f A.

If we fix mi then the inner subproblem can be written as
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Problem 5.4 (Assignment subproblem):

max Ji(mi,X)

K

subject to ZXk = MI.
k=1

If we can solve the assignment subproblem, then the original problem can be solved as

follows. Let 2?' denote the optimal assignment of the subproblem 5.4. Note that this

optimal assignment depends on the value of mi. However, this value is implicit in the

solution since _ 'Z = mi. The solution to the original problem may now be obtained

by solving the following:

Problein 5.5 (Main problem):

max J1 (m 1,X')
mIEZ+

subject to 0 < m7 M.

Each of the problems 5.4 and 5.5 will be considered separately. Our efforts will be concen-

trated on "!ý" solution of problem 5.4 since we will show that problem 5.5 has many maxima

and hence, in general, ý. global : -arch will have to be done to obtain the optimal solution.

5.3 Optimal Number of First-Stage Weapons

Let us assume that we can solve the assignment subproblem 5.4 and consider the problem

5.5 for the case of T = 2. Recall that, for the Target-Based case, the corresponding problem

had multiple minima. Since the Target-Based problem is a special case of the Asset-Based

problem then one can conclude that problem 5.3 will also have multiple local maxima.

Consider, for example, the case Al = 14,K = 3, i = [1,1,!] and pk( t ) = 0.9. (Note that

this is the Asset-Based version of the problem that was used to illustrate that, for the

Target-Based problem, the expected value as a function of the number of weapons used ii)

I._

_ _. . . • • " " . - J .. ' _ 2... . . . ". . . . ' . . . . ". . . . . . . - = - ' - - '
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Figure 5.1: An example of the two-stage dynamic asset-based problem for which multiple
maxima exists. Plot of the expected two-stage value Jl(ml) minus the static value J 1(M)
vs. the number of weapons used in stage 1, ml, with M 14,.- 3, fi(l) [1,1, 1],p1 0.9.
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the first stage had multiple minima). In fi, are 5.1 we have plotted Ji(ml, X'(ml))- JI(M)

versus rnm for this problem. The optimal value of the static strategy was subtracted from

that of the dynamic strategy to obtain a scale on which the different maxima are visible.

Furthermore, we have only plotted ti ! cases m, = [2,..., 12]. Again this was done so that

the different maxima will be visible. The difference in value of the local maxima is so small

that for all practical purposes the solution for any of them will be satisfactory.

Therefore, to obtain the global maxima one must essentially do a global search. For

most practical purposes however, a local maximum will suffice. To obtain a local maximum

a simple local search algorithm (like the one presented in section 3.4 for the Target-Based

version of the problem) can be used, If several processors are available then the local search

algorithm can be run on each of them simultaneously with different initial solutions. The

best local maximum may then be taken.

1Problem 5.3 is an important one since it is used to determine the optimal number of

weapons to use in the present stage. However, it is also a difficult problem to solve because

the objective function is not unimodal. Our belief is that in practice any local maxima will

suffice since we conjecture that the difference in the values of any two local maxima will be

negligible compared to the value of any one of them. The reason why all solutions cannot

be checked is because of the computational requirements for evaluating each solution. This

computation can be reduced by making good approximations. One approach that has been

used [10] is to approximate the marginal return of increasing the value of ml by one and

decreasing the value of m 2 by one. If this is positive then m1 is increased and the process is

repeated. Similarly the marginal return of decreasing the value of ml by cne and increasing

the value of tn 2 by one can be approximated etc.

5.4 Optimal Assignment of the First-Stage Weapons

In this section we will consider the assignment subproblem 5.4. In this problem the number

of weapons to be used in the first stage is fixed and the objective is to assign these weapons

op)timally. Note that for the static version of' this problem we were able to obtain a sub-
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optimal algorithm but not an optimal one. In this section we will provide a suboptimal

algorithm as well. This algorithm is similar to that used to solve the static problem in that

it approximates the objective function by a concave, separable one. We will illustrate the

algorithm for the case of two stages.

Since there are only two stages then m 2 = M - MI. Let J1 (9) denote the expected

value for a first stage assignment of X, (with T-= Xk : mi), and 7n 2 weapons are assigned

in the second stage optimally. The function JJ(X) is non-separable (with respect to the

assets) and non-concave We will approximate this function by a function J3 (A') which is

both separable and concave.

Let Ck denote the kth column of the K-dimensional identity matrix and let Xk be a non-

negative integer. Consider the one-dimensional function Jl(Xkek). This is the expected

value if, in the first stage, Xk weapons are assigned to asset k and no other weapons are

assigned in this stage while in the second stagE m2 weapons are assigned optimally. An

example of this function is given in figure 5.2 (the solid line). For this example we used

K 2, k = 1, (1) = [10, 10],V = [1,1], :mod pit) = [.4,.41. The number of weapons used

in stage 2 was fixed at 20.

Note that, as a function of multiples of n, the function is convex and then becomes

concave. This property was observed for the static problem as well. flowever note that,

between multiples of n the function is convex for small X and concave for larger values of X.

This is unlike the static case for which the function was always convex between multiples

of n. The reason for this is that, even if only a subset of the targets aimed for an asset

are engaged, there is still a significant increase in value because the remaining targets will

be engaged in the second stage. We have also included the concave hull (the dashed line)

of the function in the plot. We will denote the concave hull of this function by Jl(Xkek).

Note that the concave huU is a very good approximation to the function.

Let us denote the K.-dimensional zero vector by ". The approximation to the function

I ...- -- .- - - - - . .....- .- ... ... I- " - II
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Figure 5.2: An example the expected two-stage value, J(X)., plotted along a coordinate
direction for a two-asset problem.
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.[,(X) which we will use is given by:

K

] (Y) - 1() + Zj1(xkek) - J1 (5.4)
k=1

where the function J I(Xkek) is the concave hull of the function J1(X) along the kt' coor-

dinate direction. Along the coordinate directions this approximation is the concave hull as

given in figure 5.2. The values for the interior points are obtained by summing the increases

along each coordinate and adding the value at the origin. Note that the value at the origin

is the optimal value of the corresponding static problem with m 2 weapons since no weapons

are used in stage 1.

Note that the function J1 (XI) is concave and separable with respect to the assets. Fur-

thermore, note that if m, = M, (i.e. all weapons are used in the first stage) then the

problem is a static one and the approximation used is the same as the approximation that

was used in the suboptimal algorithm for the static. problem that was presented in chapter

4. Also note that if only enough weapons are used in stage 1 to defend one of the assets,

then the approximation is the same as the exact function because along the coordinate

directions through the origin both functions are equal in the region in which the asset is

(defended. Therefore, in the limits of small and large values of ml the approximation is

* good.

In figure 5.3 we have plotted the function J(.(X) versus X 1 and X2 for the example used

for figure 5.2. In figure 5.4 we have plotted the corresponding approximatiun '1 ('9). We

only evaluated the functions at points where X 1 and AX2 were multiples of n. Note that the

approximation is good if X1 > 20 and X2 = 0 or if X 2 > 20 and X, = 0. This is where

the solution will lie if only one of the assets is defended. The approximation is also good in

the region X, > 20, X2 > 20. This is where the solution will lie if both assets are defended.

Also note that the approximation is an upper bound on the true function. The algorithm

is given in figure 5.5.

The suboptimal solution is obtained by solving the problem with the approximate func-

tion as the objective. The value of this solution is then evaluated using the exact function.

-Milt& ~
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Figure 5.3: The expected two-stage value J1(X)., if Xt. wepnnns, are assigne to defend
asset k in stage 1 and 20 weapons are reserved for stage 2 with K 2, 2

7 k(1) 10, Wk

4 1,pki) = .4 ,7k= 1 fork = 1,2.
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Figure 5.4: The concave hull approximation, J, (X), of the function J1(X) given in figure
5.3.

procedure DAB
begin

Pick a value for ml;

Compute the approximate function ,11 (X);
Use MMR algorithm to assign the m, first stage weapons using
J1 (X) as the objective function;
This assignment will be the sub-optimal solution for the dynamic problem;

Evaluate value of assignment using simulations;

Figure 5.5: Algorithm for the Dynamic Asset-Based problem

i
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However, since the approximate function is an upper bound then if we evaluate the solution

using the approximate function then we can obtain an upper bound on the optimal value

of the problem.

Theorem 5.1 The function il (X) defined by equation 5.4 is an upper bound to the function

J,1(X), i. e

i 1(X) ŽJI(X for X EZK.

Proof: Let us first show that the marginal return of adding weapons to an asset decreases

as the number of weapons assigned to the other assets increases. Let us first consider the

case in which weapons are being added to the defense of two assets j and k. We want to

show that:

Jl(X + xkek) - J1(X) _ J 1(X + Xkek + Xj e3 ) - J1 (X + xjej).

where Xk and Xj are positive integers. Let E(rj,rk) denote the expected value given that

rj of the targets aimed for asset j survive stage 1 and that rk of' the targets aimed for asset

k survive stage 1. We then have:

. J,( ± x+•k•k) - J(X) - J( 4 Xkk + xjej) + J1 (X + Xjej) = (5.5)
n,(1) nk(l)

- Z y Pr(nj(1) = rj)Pr(nk = rk)[E(nj,rk)+ E(rj, Ynk) - E(nj,nk) - E(rj, rk)].
r,=0 r--=O

Consider the difference

E(nj, rk) + E(rj, nk) - E(nj, nk) -E(ri, rk). (5.6)

If r. n j or r, = nk. then this difference is zero. Let us therefore assume that rj < nj

and rk < nk. The functi, n E is the expecred value of a static problem. Consider any

outcome if(2) of stage 1 and consider a new problem in which each asset i is duplicated

and the duplicate i' has the same number of targets aimed for it. This is done for all assets

except assets j and k. Fur asset j we will assume that the original is being attacked by nj

targp's while the duplicate j' is being attacked by rj targets. For asset k we will assume
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that the original is being attacked by nk targets while the duplicate k' is being attacked

by rk targets. Let S denote the set of the original assets except j and k and let S' denote

the - t of the duplicate assets except j' and k'. The number of weapons for this problem

will also be doubled to 2m2. Consider the optimal solution of this new problem. If assets

j and k are defended, then the number of weapons assigned to them will be greater than

the number assigned to j' and k'. On the other hand if they are not defended then the

number assigned to j' and k' will be greater than those assigned to j and k (which is zero

in this case). Therefore if we solve the problem under the restriction that m2 weapons are

to be assigned to the assets S U {j, k} and m2 weapons are to be assigned to the assets

S' U {j',, k-, then the resulting optimal value will be less than or equal to the optimal value

of the problem under the restriction that m2 weapons are assigned to the assets S U {j', k}

and 7n2 weapons are assigned to assets S' U {j,k'P. This is because in the latter problem

weapons can be optimaUy divided between assets j' and k and between assets j and k'. The

optimal value of the former problem is E(nj, nk)+ E(rj, rk), while the optih al value of the

latter problem is E(nj, rk) + E(r:, nk). Therefore, the difference 5.6 is non-negative which

implies that the quantity in 5.5 is non-negative.

This argument can be repea.ted for any subset of assets to conclude that:

K K

J11(9) .- J1 (d)5 • L[Jl(Xkek) - JI~(d)] :5 EJi1(Xkfk) - .Jlk()] ji(X) -Ji(d).

k.=1 k=1

Therefore the approximation is an upper bound to the true objective function. a

Note that evaluation of any feasible assignment in stage 1 requires an optimal algorithm

to compute the optimal stage 2 value for each possible outcome of stage 1. Since we do not

have an optimal static algorithm we c; only compute a lower bound on the expected value

of the solution of the dynamic algorithm. This is done by using the value of the solutioni

produced by the algorithm described in chapter 4 for the solution of the static problem

in stage 2. There is also the problem that the number (,f possible outcomes is enormous.

To overcome this probIrm we use Monte Carlo simulations. We simunlate the first stage
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outcome and then compute the value given that outcome. Several of the simulations are

run and the sample mean is taken as an approximation of the value. These simulations will

be discussed in detail in subsection 5.5.1.

An upper bound on the optimal value is obtained as follows. Solve the problem in which

the objective (dynamic case) function is replaced by the approximate function J. We also

need to use an upper bound for the value in the second stage. This can be obtained from

the sub-optimal algorithm that was presented for the static problem.

5.5 A Dynamic Target-Based Approximation to the Asset-
Based problem

In this section we will present a heuristic for the Dynamic Asset-Based problem in which the

Asset-Based objective is approximated by a Target-Based one. In section 4.4 we presented

a method for approximating the objective function of the Static Dynamic-Based problem

with a Target-Based objective function. The resulting Target-Based problem could then

be solved using the methods of chapter 3. This provided a sub-optimal solution for the

Static Lsset-Based problem. If we use this approximation in the final stage of the Dynamic

Asset-Based problem then the resulting problem is a Dynamic Target-Based problem. The

methods of chapter 3 can then be used to solve the approximate problem. Such a method

has been used by Castarion et al [10].

This approach has the advantage that the solution methods for the Target-Based prob-

lem can be used in its solution. The approximate problem is also simpler and requires less

computation than the true (i.e. the Dynamic Asset-Based) problem. There are, however,

tw Serious liit atio,,s to0 Such an appioach. These iixiiiations may lead to poor perfor-

mance of the algorithm in certain situations. These situations are often present in practical

problems. We would like to stress that the two limitations to be presented below apply only

if a pure Target-Based approximation method is used. Modifications can be made to the

Target-Based approximation approach to rc-medy these limitations. Such mijodifications 2

2 The specific details of these modifications were not available to the author.

__ _ _ _ _ _
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have been used in the heuristics used by Castafion et al. Therefore, the limitations to

be described do not apply to their methods. The purpose of presenting the Target-Based

approach and its limitations (if used in its pure form) is to emphasize the fact that one

must be careful in choosing appropriate approximations. Approximations which may seem

"reasonable" may have serious flaws.

The first limitation of the approach is that it cannot produce a truly preferential defense

when such a defense is preferable. This limitation will appear in problems in which there

are several low kill probability weapons (i.e. problems in which a preferential defense

strategy is optimal). The reason for this is as follows. Let us first consider the static Asset-

Based problem. Recall that for this problem, the expected surviving value of an asset as a

function of the number of weapons assigned to defend the asset is a non-linear, monotonically

increasing function. This function is convex if the number of assigned weapons is small and

concave if the number of assigned weapons is large. The shape of this ftinction is what

is responsible for preferential defense strategies as we will next explain. If few weapons

are assigned to defend an asset then the marginal return of adding a weapon is larger

than it was for the previously added weapon because the expected surviving value of the

asset is convex in this region. Therefore, it is advantageous to continue adding weapons

since the marginal return continues increasing. Eventually the number of weapons assigned

would be such that the expected surviving value of the asset is concave. Henceforth, it

is not advantageous to add weapons since the marginal return is small. This implies that

several weapons should be assigned to the assets which are defended and no weapons should

be assigned to the other (undeiended) assets. If a Target- Based approximation is made

the resulting objective function will be concave, even when a sinall number of weapons are

assigned to defend an asset. Therfore, if such an approximation is made, preferential defense

strategies will not be optimal. Let us now consider the dynamic version of thý asset-based

problem. In order tc. have preferential defense strategies in the first stage the objective

function must have the property that it is convex if few weapons have been assigned. Note

that the approximation used in section 5.3 was chosen so that this property is maintained.

S ....... .............. . .. _. --% • _ _ • ... .. _-- .I
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However, if a Target-Based approximation is made for the last stage of the problem then

the objective function in the first stage of the resulting approximate problem will not have

the property that for small numbers of assigned weapons the objective is convex. Therefore,

if a Target-Based approximation is used for the last stage then it is not possible to obtain

a preferential defense in the first stage. However, we will find in the next section that in

some situations it is preferable to use a preferential defense strategy even in the first stage

of the dynamic problem. We will find that the algorithm described in section 5.3 produces

a first- stage preferential defense strategy for such cases. However, if the Target- Based

apnroximation is used then a preferential first-stage defense strategy cannot be obtained.

The basic reason for this difference is that the method described in section 5.3 approximates

the first-stage objective function and maintains the important characteristics of the true

function. On the other hand the Target-Based approximation approach approximates the

expected value for the final stage. Therefore the characteristics of this approximation are

carried over into the first-stage objective function.

The second limitation of the Target-Baed approximation method occurs in problems

in which there are few weapons. Note that this is the opposite of the case considered ii the

previous paragraph (i.e. many weapons). Consider for example the case of two stages with

problem parameter values given by M = 100, N = 100, nk -- 10,K = 10 Pk = 0.8,lrk =

I, Wk = 1 for k = 1,...,K. We find that for the approximate Ta:et- Based problem all

targets will have a value of unity. Furthermore, since the number uf weapons is equal tc the

number of targets then we know that a static strategy will have the same performance as

a static one. Therefore, an optimal strategy for the Target-Based approximation problem

is to use all 100 weapons in stage 1 and to assign one woapo, per target. The value of

this assignment is 1.07. Note that thi.s value is even WOIF• thair the optimal value for the

Static Asset-Based problem which is 3.32. In the next sect on we will show that the solution

produced by the method described in section 5.3, is to use 70 weaponi., in ,;tage 1 and to

defend 7 of the assets with these weapons. The remaining 30 weapons are then used in the

second stage. The value of this solution is 6.53. Therefore we find that the Target-Based
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approximation method can produce very poor results. In fact for this problem the value

of the solution produced by the Target-Based approximation method is even worse than

the optimal value for the Static problem. We again can conclude that for certain problems

the pure Target Based aplproximation method may perform poorly. On the other hand, the

algorithm described in the previous section (section 5.3) can easily handle the problems for

which the Target-Based approximation method performs poorly.

Our conclusion is that,in its pure form (i.e. use a Target-Based approximation for the

expected value in the final stage and solve the resulting Dynamic Target-Based problem

to obtain a suboptimal solution to the Dynamic Asset- Basýd problem), the Target-Based

approximation approach will not perform as well as the method described in section 5.3.

However, this approach has certain advantages such as simplicity and the fact that Target-

Based algorithms can be used in its solution. For practical problems these advantages may

be more important than the advantage of better performance which is the main advantage of

the method of the section 5.3. Modifications to the Target-Based approximation approach

can be made to remedy these limitations. These modifications will depend on the nature

of the problems being solved.

5.6 Numerical Results

SIn this section we will present several computational 3sults for the Dynamic Asset-Based
, .1

WTiLA problem. We will use the algorithm given in figure 5.5 to solve the problem and

will also provide a.n1 uJper bound on the optimal value for the problem. Some sensitivity

analysis results will also be presented.

The following problem will be used as our baseline problem. We will cousider the case

of tw.) time '!tages. The kill probability of each wf Tpooi-target pair in each of the stages is

Pk(t) = 0.6. There are K = 10 assets to each of whlh is aimed nk = 10 targets, The defense

has M = 200 weapons to intercept these 100 targets. The lethality probability 7rk of each

target i.i unity. Thc- valbie W, of u,,h of the assets is unity. This problem was chosen as

the basdine problem because it illustrates the following. The optimal stl; ic strategy of this

l .. . .. . f ... . i .. .i • " I • i ii II II
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problem is to defend 5 of the 10 assets. However, we will find that in a dynamic scenario

it is better to defend nine of the assets in the first stage. Therefore the number of assets

defended is almost doubled if a dynamic strategy is used rather than a static one.

5.6.1 Discussion of Simulations

As was mentioned in the previous section, our proposed algorithm produces a sub-optimal

solution. In order to compute the expected value for this solution one needs an optimal

algorithm for the static problem since for each possible first-stage outcome one must find

the optimal value for the corresponding static problem. Since this is not available, we will

produce a lower bound on the value of this solution. This will be done by using a lower

bound on the optimal value for each static problem that must be solved. Another difficulty

is the niumber of possible outcomes that must be examined. For exarmple, suppose that in

the baseline problem each of the assets had a different value and that in the first stage a

single weapon is assigned to each target. If this is the case then for each asset either 10

of the targets aimed for it may survive or 9, ... , or 0. Therefore since there are 10 assets

the total number of possible outcomes of stage 1 is 1110. For each of these outcomes one

must calculate the corresponding optimal static value. Such a task is overwhelming. This

difficulty is overcome by using Monte Carlo Simulations..

We simulate the first stage of the engagement as follows. Let X denote the first stage

assignment. Because of the uniformity of the problem, the optimal target assignments can

be obtained by spreading the weapons assigned to an asset evenly among the targets aimed

for that asset. Let us denote the first stage target assignments by Z. The engagements of

the weapons on target i is simulated by flipping a coiii. The success probability of the coin

is (I - pk)Z,. If the coin toss is a success then we assume that target i survives the first

stage, while if the coin toss is a failure then we assume that target i is destroyed in stage 1.

This is repeated for all targets to obtain the target state for the second stage. The expected

value of this outcome is then computed (actually only bounds on the expected value can

be computed because we do not have an optimal algorithm for the static problem). Several

~~~~~~~~~~~~~~~~~~~~~~~ NOW . . , •• Z_ -- , .r• .- - •'• -,- -.:L .. .. . _'- . . . . .
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Figure 5.6: Mean of the values for the Monte Carlo simulations vs. the number of sim-
ulations performed for the baseline problem; all weapons are used in the first stage. The
dashed line is the exact expected value for the problem.

of these Monte Carlo Simulations are performed (we have used 100 runs) and the sample

mean is then taken as an approximation to the expected value of the assignment X. We

have found that after about 100 simulations the first two digits of the sample mean remain

constant.

Consider, for example, the baseline problem. If few weapons are used in stage 1 then the

number of possible outcomes is small and one would expect that after a few simulations the

expected value would be obtained. Therefore as the number of weapons in the first stage

increases, (and the number in stage 2 decreases) the number of simulations necessary will

increase. Let us consider the case in which all of the weapons are used in stage 1. This case
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should req'.ire the most number of simulations. Furthermore we can compute the expected

value for this case exactly since it is simply a simulation of a static problem for which the

expected value can be computed. In figure 5.6 we have plotted the sample mean of the

values of the simulations versus the number of simulations. Note that in this case we do

not need to use a lower bound for the optimal value in stage 2 since we can compute the

optimal stage 2 value exactly. On the plot we have also included the exact expected value

for the problem which is given as follows:

J, = 5(1 - (A4)4)10 = 3.86

Note that only five of the assets are defended; each are defended with 40 weapons. Note

that after 100 simulations the first two digits of the sample mean is correct and remains

correct.

The value for any given first stage assignment is a random variable. An important

quantity is the variance of chis random variable. This will indicate how close the value of

any single outcome is likely to be to the expected value. In figure 5.7 we have plotted the

sample standard deviation (the root of the variance) versus the number of simulations for

the baseline problem in which all weapons are used in stage 1. Again since this is a static

problem the exact value of the standard deviation can be computed as:

a [5(1 - (.4)1)'0(, - (1 - (.4)4)')]1 = 0.94.

Note that after about 50 simulations the sample standard deviation is close to the exact

value. Note that for this problem the expected value is 3.86 and the standard deviation is

- it ,.-4 The bLandrar dev. -i.t. ib thejefure ioug.i. y 60,0 of Me optl..• -1 Value. TL ills mI-eanis

that any two outcomes can have significantly different values.

Let us now consider the baseline problem but use 100 weapous in ea ch of the stages. In

this case we cannot compute the expected value and the standard deviation exactly because

of two reasons, (a) we do not have an optimal algorithm to compute the optimal value for

the stage 2 problem and (b) the number of possible outcomes of stage 1 is too large.

Because of these problems we will compute hounds on the expected value by simulating

____ __ ____ _ _ ____ ___ _ __ _ _ _ _-
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Figure 5.7: Standard Deviation of values for the Monte Carlo simulations vs. the number
of simulations for thf- ha.nli,, problem; all weapons are uwed in the first stage. The dashed
line is the exact standard deviation for the problem.
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Figure 5.8: Mean of the values for the Monte (arlo simulatioA. the umber ofU

lations performed for the baseline problem; 100 weapons are used in the each stage. The
dashed line corresponds to using an upper bound for the second stage value. The solid line
corresponds to using a lower bound for the second stage value.
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r igure -.{: ',,•rious val!'es for the dynamic and static strategies for the baseline problem

stage i Ž.nU finding bounds for the expected value in stage 2. The standard deviation will

Sbe .'~- .-.im~red by 3imulating stage 1 and then taking the sam'le deviation of the result.
The bou.d' fr th, stagy 2 optimal v3,ies are found by the use of the algorithm that was

-res .•te.- ti chapter for 'he 5t.j.tic strategy.

41f figure 5.8 we Ie.itd the sample means of the upper and lower bounds. Note

that each houn,' converge.: to .- ,ne quantity and the difference of these quantities is small.

ki figure 5.9 we have plotted t, ,.ample standard deviation obtained by simulating stage 1.

Severaj valie; :..d botaj t, ..,ave been mentioned. In figure 6.10 we have shown where

each of these quantities liie relative to the others. These quantities are for the baseline

4-". problelu using 90 ,.. ,apor1,s ;J s ,e which is the best . . ,n obtained by our algorithm.r,€
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The upper bound on the optimal value for the dynamic strategy is 7.46. The lower bound

on the value of the suboptimal solution of our algorithm is 7.12. Note that this provides us

with a lower bound on the optimal value. For illustrative purposes let us assume that the

-- optimal value of the dynamic strategy is 7.2. We will assume that the standard deviation

for the optimal solution is the same as the standard deviation of the sub-optimal solution

which we will take to be the sample deviation obtained after 200 simulations (see figure

5.9). We have also included the optimal static value which is 3.86. In general the optimal

value for the static problem may not be computable but upper and lower bounds can be

obtained. The standard deviation for the static value is also shown.

5.6.2 Discussion of Upper Bound Computation

If we fix the ::lumber of weapons to be used in stage 1 then one can obtain an upper bound

on the optimal value (for that number of first stage weapons) of the problem by solving the

dynamic problem with the upper bound approximation J. In order to obtain the vlobal

solution of the problem one must search over all possible values of mi, the number of

weapons used in stage 1. In figure 5.11 we have plotted the lower bound cn the value of the

solition produced by the algorithm (solid line) as well as an upper bound on the optimal

value (dashed line) versus the number of weapons used in stage 1. In ord,-. 'o obtain a lower

bound on the optimal value of the problem we must choose the maximum over all vajues

of mn of the solid line. To obtain an upper bound on the optimal value we must choose

the maximum over all values of mn, of the dashed line. Unfortunately we find that each of

these fi )ns peaks at different points. It is, however, very unlikely that the optimal value

of mi is obtained at the peak of the upper bound because at that point the lower bound

is extremely small. We will therefore, assume that the optimal value of rnm is the point at

which tht lower bound on the expe.cted value of the solution of the algorithm pNtaks. This is a

very reasonable assumption since we believe that the shape cf this function :presents very

closely the shape of the optimal one.

L ...... i i ---i i i i i ii .... i i i i i i "
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Figure 5. 11 : Upper artd iowei buundb on the optimal value vs. the number of weapons used
in stage 1 for the baseline problem.
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5.6.3 Sensitivity Analysis

One important feature that we have discovered about a dlynamic strategy is that it is less

sensitive to the number of assets defended compared to the static strategy. This can be

illustrated as follows. In figure 5.12 we have plotted tui lower bound on the expected value

of the dynamic strategy versu-' the number of assets (uniformly) defended. We have also

plotted the case for a static strategy. Note that for the dynamic strategy it makes little

difference whether 8, 9 or 10 of the assets are defended in stage 1. On the other band, the

performance of the static strategy degrades significantly if the optimal number of assets are

not defended. This difference will be of more importance in the general problem where on3

must decide on which subset of assets should be defended.

We will next present a simple but approximate expression for the optimal value of the

two-stage dynamic strategy. We will assume that nk = n, Wk = W, wk = -r and Pk(t) = p.

We have found empirically that a good approximatiorn to the optimal value of M1 under

these assumptions is M/2. Let us suppose that it is optimal to defend L of the assets in

*] stage 1. T'he optimal strategy is to spread the weapons au evenly as possible among the L

assets. If this is done the expected number of targets aimed for an asset that survive stage

1 is given approximately by

A • n(l - p)+2-.

Again we have found empirically that the assets defended in stage 2 are the same that were

defended in stage 1. Also the weapons will again be spread as evenly as possible among the

defended assets. If we assume that the expected number of targets survive stage 1 and that

in stage 2 only the assets that were defended in stage 1 are defended then the cost can be

approximated by

Jý(L) ;zý L[1 - (I - p})-2] (5.7)

We could not find a simple expression for the number of assets to be defended in stage

1. However, the expression 5.7 can easily be evaluated for different values ct L and the

maximum value taken. Consider for example the baseline problem. If 8 assets are defended
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Figure 5.12: Optimal dynamic and static values as a function oA the number of assets
defended for the baseline problem
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in stage 1 we get ft = 3.18 and so

Ji'(8) Z 8[1 - (.4)3.9]3.2 7.3.

Similarly we can compute

J (9) s 7.2,

and

Js(7) : 6.8.

Therefore it is better to defend eight of the assets than to defend seven or nine. The lower

bound on the optimal value for this problem is 7.1 while the upper bound is 7.5. We

therefore find that the approximation 7.3 is a good one. Using our heuristic we find that 9

of the 10 assets should be defended in stage one. The approximation says that 8 of the 10

assets should be defended in stage one.

Let us now consider the case of the baseline problem but with 100 defense weapons. If

we use the above approximation we find that it is best to defend 4 of the assets in stage 1

and that the resulting value is given by

Ji*(4) - 3.7.

The upper and lower bounds on the optimal value for this case is 3.93 and 3.47. So we

again fir.d that the solution obtained using the approxiarntion is very good,

These approximations can be used to get a rough estimate of the number of weapons to

use in stage 1, the number of assets to defend in stage I and also the expected value of the

assignment.

5.6.4 Numerical Examples

We will next consider what happens to the optimal solution and value as each of the

parameters in the baseline problem is varied. Because of the unifbrmity of the problem,

all but one of the assets will be defended by the same number of weapons. Therefore we

will represent the solution of the dynamic probleem (ie. the stage I assignment) by the

I
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Kill probability 0.5 0.6 0.7 0.8 0.9 1.0
No. Stage I weapons 150 90 100 100 100 1100
Dynamic Solution 7.5 9 10 10 10 10
Dynamic Upper Bound 6.9 7.5 9.5 10 10 10

_Dynamic Lower Bound [5.1 7.1 9.3 10 10 110
Static Solution 4 4 5 -6.7 10 10 10
Static Upptr Bound 2.9 3.9 5,1 6.6 9.0 10
Static Lower Bound 2.9 3.9 4.9 6. 901 10FRatio Upper Bound 12.4 11.9.9 1.1 .151.05
Ratio Lower Bound [1.8 I 1.8 1.8 1.5 11.11.

Table 5.1: Dynamic and Static Values for the Baseline problem with 200 weapons and
various kill probabilities

Kill probability 0.5 0.6 0.7 0.8 0.9 1.0

No. Stage 1 weapons 100 80 90 100 100 100
Dynamic Solution 5 8 9 10 10 10
Dynamic Upper Bound 5.6 6.1 7.8 9.6 10 10

Dynamic Lower Bound 4.1 5.2 7.3 9.5 10 10

Static Solution 3 3.7 ,5 7.5 7.5 10
Static Upper Botind 2.2 2.9 3.8 5.0 6.8 10
Static Lower Bound 2.2 2.8 3.8 4.8 6.7 10

Ratio Upper Bound 2. 12.1 2.0 20 ' 1. 0
Ratio Lower Bound [ 1.911.8 J1.9 - 9 1.5/ 1.0

Table 5.2: Dynamic and Static Values for the Baseline problen with 150 weapons and
various kill probabilities

Kill probability 0.5 0.6 0.70.8To 1.-
No. Stage I weapons 50 50 60 70 90 p100
Dynamic Solution 2.5 5 . 7 9 J 10
Dynamic Upper Bound 3.2 3.9 6.5 8.5 10
Dynamic Lower Bound 2.6 3.5 4.8 j 6.2 /.9_{ 10

jStatic Solution 2 [2.5 3 531 5 5 o0
Static Upper Bound 1.5 1.-25 . 4.5 1Static Lower Bound L5 1.7 2.313.3L 4.5 -10L Ratio Upper Bound 321 f2.3 2 2.0 1.9 1.0
Ratio Lower Bound 9 Lj.-[. L --. _• _1

Table 5.3: Dynamic and Static Values for the Baseline problem with 100 weapons and
various kill probabilities

-- i-'<-i-. ....'.-....T .... i .. ...J-i..... . ........ . ..-............ -- - -r .... --r - -q F
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number of assets defended in stage 1. All but one of the assets will be def, iided with the

same number of weapons. The other defended asset will be defended with 'sser number

of weapons so it will not be as heavily defended as the others. We will inclu this asset as

a fraction in the number of assets defended. This fraction will be the ratio of the number

of weapons assigned to defend the asset and the number of weapons assigned to each of

the other (more heavily defended) assets. We also computed upper and lower bounds on

the ratio of the optimal dynamic and static values. These bounds were obtained using the

upper and lower bounds on the optimal Dynamic and Static values. In 5.1 we have included

dynamic and static results for the baseline problem. Table 5.2 contains the dynamic and

static results for the baseline problem with 150 weapons while table 5.3 contains results for

the baseline problem with 100 weapons. We will next provide some examples and discuss

the implications of each of the results.

In figure 5.13 we have plotted the upper and lower bounds on the optimal values for

both the dynamic and static strategies for the baseline problem with 200 weapons (solid

lines). We have also plotted the approximation obtained using equation 5.7 (dashed line).

Note that the approximation is a good one. In figure 5.14 we have plotted the bounds for

the baseline problem with 100 weapons. Note that the plots for the static and dyiiamic

strategies have roughly the same shape (convex for small values of p and contave for largttr

* values). The only diffen-mce ii, that the curve for the static strategy is lower. Therefore let

us consider the following. If we keep the number of weapons for the dynamic problem fixed
and increase the number of weapons for the static problem, then the curve for the static

problem will approach that for the dynaniic problem. Some simple calculations Q.ow that

this will occur when the number of weapons for the static problem is roughly twice that

for the dynamic problem. We, therefore, find once more that the dynanmic strat,,gy requires

about half as many weapons as the static strategy for the t;anie level ,f performance. Recrall

that this result was also true for the Dynamic Target-Based problem. Also note that the

optimal values for both problems are sensitive to the kill probv,•.ility.

In figure 5.15 we have plotted the upper ,;iLd lower bounds on th, ratio of the optimal

i\"i

V!

• I
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Figure 5.13: Upper anti lower houn~ds op. the optinal v:alu.es for the dynan. .1c and statti~c
':" problems versus the kill probability for the baseline problem with 200 weapons. The dashed

line is the approximation to the optixnal dynmnmic valne obtained using equation 5.7.
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VAgure 5.14: Uppei aiud luwer bounds on the optimal values for the dynamic and static
problems versus the kill probability for the baseline problem with 100 weapons. The dashed
line is the approximation to the optimal dynamic value obtained using equation 5.7.
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and static problems versus the kill probability for the baseline problem with 200 weapons.
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Figure 5.16: Upper and lower bounds on the ratio of the optimal values for the dynamic
and static problems versus the kill probability for the baselir.e problem with 100 weapons.
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dynamic and static values versus the kill probability for the baseline problem with 200

weapons. We have also included the value obtained by the approximation presented in

the previous subsection (the dashed line). In figure 5.16 these bounds were plotted for the

baseline problem with 100 weapons. Note that the ratio goes to unity as the kill probability

"goes to one. This happens because, in the limit of unit kill probabilities, all assets will

be saved if either strategy is used. For kill probabilities less than 0.9 the ratio of the

optimal dynamic and static strategies is roughly two. In other words, a dynamic strategy

outperforms a static one by roughly a factor of two. Note that, for static problems, the

optimal value increases linearly with the number of weapons. Therefore, twice as many

weapons will be required for the static problem to obtain the same performance as the

dynamic problem. This is the same conclusion that was drawn in the previous paragraph.

The only difference between the curve for the case of 200 weapons and that for the

case of 100 weapons is that the former curve starts dc:creasing around p = .8 while the

latter curve starts decreasing around p = .95. Since there are 100 weapons, there will be

double shooting if 200 weapons are used. Note that the effect of double shooting with a

kill probability of p is the same as single shooting with a kill probability of 1 - (1 -p)2).

We will therefore consider the case of 200 weapons as being equivalent to the case of 100

weapons with a kill probability of p(2 - p). The following can therefore be used as a rule of

thumb. If the number of "perfect" weapons (M(1 - (1 - p)#) is less than 95 and greater

than 50 then the ratio of the optimal values of the dynamic and static problems is roughly

two. This means that, for these types of problems, the dynamic strategy outperforms the

static one by a factor of two.

In the following tables we will investigate the affect of changing various parameters of the

baseline problem. We will provide the results for both the dynamic and static problems for

comparisons. Note that, for the baseline problem there are 10 unit valued assets. Therefore

the expected surviving value of the assets cannot be greater than 10.

, • , .• •-_ .. . . ,•-. • . . . . .. . . . .. . . . .. . • .. .. ..
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Table 1: Baseline Problem

The baseline problem: M = 200,N 1 l00,T = 2,K = 10, 10,Pk = 0. 6 ,7rk = 1,1Wk = I

fork =I,...,K.

STATIC CASE:

Optimal solution3: [0,0,0,0,0,40,40,40,40,40]

Optimal value: 3.86

Standard Deviation: 0.94

DYNAMIC CASE:

Number of weapons used in first stage: 90

Assignment of these weapons 4 : [0,10,l0,10,10,10,10,10,10,10

Lower bound on value of this solution: 7.12

Upper bound on optimal value: 7.46

REMARKS:

I Note that for the static case the optimal strategy is to defend half of the assets uniformly

(preferential defense). For the dynamic case 9 of the assets are defended in the first stage.

Note also that the value of the solution produced by the sub-optimal algorithm is close to

the upper bound on the optimal value. This implies that the sub-optinal solution is either

equal or close to the optimal solution.

Note that a typical stage 2 state might be [0,4,4,4,4,4,4,4,4,4]. For this state the optilaal

stage 2 solution would be [2,12,12,12,12,12,12,12,12,12]. Therefore we see that the same

number of assets that were defended in stage 1 are defended in stage 2. This makes sense

ince weapo,, woid be was,•ted if m.. azsets wcre defended in stage I thn in stage 2.

Finally note that the optimal dynamic value is roughly twice that of the optimal static

value. This means that the defense can save roughly twice as many assets by using a dynamic

strategy. Since roughly seven assets are eventually savea with the dynamic strategy then
3Represented by the number of weapons assigned to defend each of the 10 assets. The number of weapons

assigned to each of the targets diiected to an ast can be obtained by dividing by 10 the number of weapons
"asigned to the defense of that asset.

4 Represented by the nurnbei of weapons assigned to defend each of the 10 assets in the first stage.
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why does the defense attempt to save 9 assets in the first stage? Let us consider such a

strategy. Consider the assignment in which 160 weapons are used in stage 1. These weapons

are used to defend 8 assets with 20 weapons each. The expected value for this solution is

7.09. Therefore we find that if the defense did try to save 8 assets in the first stage then

the resulting solution is near-optimal. This suggests that any reasonable strategy will be

near-optimal.

Table 2: Baseline Problem with lower kill probability

The baseline probl m except that the kill probability for each weapon-target pair in each

stage is 0.5:

STATIC CASE:

Optimal solution: [0,0,0,0,0,0,50,50,50,50]

Optimal value: 2.91

DYNAMIC CASE:

Number of weapons used in first stage: 150

Assignment of these weapons: [0,0,10,20,20,20,20,20,20,20]

Lower h--und on value of this solution: 5.10

Upper bound on optimal value: 6.90

REMARKS:

In this case we note that even for the dynamic problem it is better to use a preferential

defense in stage 1. However, 7.5 assets are defended in the dynamic case compared to 4

in the static case. Note that the algorithm is able to handle such cases for the dynamic

problem.

Table 3: Baseline Problem with higher kill probability

The baseline problem except that the kill probability for each weapon-target pair in each

stage is 0.7:

STATIC CA.YE:

~~~~~~~~~~~~IN .. . . . .I....= _.2 .• 2•-- 2. _
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Sub-optimal solution: [0,0,0,20,30,30,30,30,30,30]

Value of suboptimal solution: 4.95

Upper bound on optimal value: 5.07

DYNAMIC CASE:

Number of weapons used in first stage: 100

Assignment of these weapons: [10,10,10,10,10,10,10,10,10,10]

Lower bound on value of this solution: 9.35

Upper bound on optimal value: 9.47

REMARKS:

As the kill probability of the weapons increases we find that for the dynamic case all of the

assets are defended. Note also that either the solution produced by the algorithm is getting

closer to optimal or the upper bound on the optimal value is improving (or both) as the

kill probability increases.

Table 4: Baseline Problem with increasing (with stage) kill probabilities

The baseline problem except that the kill probability of the weapons in the first stage is 0.5

while their kill probability in the second stage is 0.7:

STATIC CASE: (all weap, .,s fired in stage 2)

Sub-optimal solution: [0,0,0,20,30,30,30,30,30,30]

Value of suboptimal solution: 4.95

Upper bound on optimal value: 5.07

DYNAMIC CASE:

Number of weapons used in first stage: 90

Assignment of these weapons: [0,10,10,10,10.i0,10,1 0,10,10]

Lower bound on value of this solution: 6.89

Upper bound on optimal value: 7.22

REMARKS:

Our intuition for this case is that more weapons should bp used in the st.age, with higher
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kill probability (stage 2) than in the other stage. The solution produced by the algorithm

does in fact hove this property. However, note that although the difference in the kill

probabilities is large (0.5 and 0.7) only 20 more weapons are used in stage 2 than in stage

1.

Table 5: Baseline Problem with decreasing (with stage) kill probabilities

The baseline problem except that the kill probability of the weapons in the first stage is

0.7 while their kill probability in the second stage is 0.5. Note that this is the reverse of

problem 4:

STATIC CASE: (all weapons fired in stage 1)

Sub-optimal solution: [0,0,0,20,30,30,30,30,30,30)

Value of suboptimal solution: 4.95

Upper bound on optimal value: 5.07

DYNAMIC CASE:

Number of weapons ised in first stage: 120

Assignment of these weapons: [10,10,10,10,10A0,10,10,20,20]

Lower bound on value of this solution: 7.67

Upper bound on optimal value: 8.52

REMARKS:

Again note that we obtain the intuitive result that more weapons should be used in the

stage with higher kill probability. However, if 100 weapons are used in stage 1 the lower

bound on the value of the resulting solution is 7.62. Therefore the value does not seem to

be very sensitive to the number of weapons used in stage 1. Finally note that the optimal
value for this case is approximately 8.i while that for the previous problem is approximately

7.1. Therefore we find that it is better to use the more effective weapons in stage 1 rather

than in stage 2. A similar result was also obtained for the Dynamic Target-Based problem.
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Table 6: Baseline Problem with less weapons

The baseline problem except that the defense has 100 weapons:

STATIC CASE:

Sub-optimal solution: [0,0,0,0,0.0,0,20,40,40]

Value of suboptimal solution: 1.72

Upper bound on optimal value: 1.93

DYNAMIC CASE:

Number of weapons used in first stage: 50

Assignment of these weapons: [0,0,0,0,0,10,10,10,10,10]

Lower bound on value of this solution: 3.47

Upper bound on optimal value: 3.93

REMARKS:

here we find that the dynamic .trategy performs better than the static one even if the

number of weapons equals the number of targets. Again we find that the weapons shoald be

divided equally between the stages. Also note that the performance of the dynamic strategy

is approximately twice that of the static one as we have found for most of the problems.

Also recall that for the Dynami Target-Based problem if the number of weaponm was less

thai or equal to the number of targets then a dynamic strategy could not perform any

better than a static one. This is a major difference between the two problems.

Table 7: Baseline Problem with more weapom.

Ti,2 baseline problem excep th at the defei.se has 300 -,weapons:

STATIC CASE:

Sub-optimal solution: [0,0,20,40,40,40,40,40,40,40]

Value of suboptimal solution: 5.58

Upper bound on optimal value: 5.79

DYNAMIC CASE:

Number of weapons used in first stage: 200
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Assignment of these weapons: [20,20,20,20,20,20,20,20,20,20]

Lower bound on value of this solution: 9.88

Upper bound on optimal value: 10.00

REMARKS:

The bound on the optimal value for the dynamic value obtained using our algo:ithm was

actually 10.29. However since there are only 10 assets, each of unit value, the maximum

possible value is 10. We therefore find that the algorithm could produce a useless bound a.

in this case. However we have found that for the cases in which this occurs a good upper

bound is the total sum of the asset values. Also note that in this case 200 weapons are

* used in the first stage. If 150 weapons are used in the first stage the lower bound on the

* Iresulting s-Aution is 9.73. Therefore if half of the weapons are used in the first stage as was

the case in most of the other problems the resulting value is still near-optimal.

Table 8: Baseline Problem with less targets per asset

The baseline problem except that there are 20 assets each of unit value with 5 targets aimed

at each asset:

STATIC CASE:

Sub-optimal solution: [0,0,0,0,0,0,5,15,15, ... ,15]

Value of suboptimal solution: 9.42

Upper bound on optimal value: 9.58

DYNAMIC CASE:

Number of weapons used in first stage: 100

Assignment of these weapons: [5,5,... ,5,5]

Lower bound on value of this solution: 16.35

Upper bound on optimal value: 16.61

REMARKS:

In this case 82% of the asset value is saved while for the baseline problem 70% was saved

This indicates that smaller attacks on each asset favors the defense. This was also true for

I-.--"
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the static problem. In other words if the number of assets is kept fixed then as the number

of targets increases, the performance of the defense decreases even if the weapon to target

ratio was kept fixed. Therefore if the defense wishes to maintain the same performance it

must increase its arsenal at a greater rate than that of the offense.

Table 9: Baseline Problem with more assets

The baseline problem except that there are 15 assets of unit value and the defense has 300

weapons:

STATIC CASE:

Sub-optimal solution: [0,0,0,0,0,0,0,20,40,40,40,40,40,40,401

Value of suboptimal solution: 5.58

Upper bound on optima;1 value: 5.79

DYNAMIC CASE:

Number of weapons used in first stage: 170

Assignment of these weapons: [10,10,10,1.0,10,10,10,10,10,10,10,10,10,20,20]
Lower bound on value of this solution: 10.57

Upper bound on optimal value: 11.90

REMARKS:

In thi'; case w2 have increased the number of assets while keeping the weapon to target ratio

fixed. We find that the percentage of asset value saved in this case (70%) is approximately

the same as that for the baseline problem (71%). We also find that the fraction of weapons

used in the first stage is closer to half than for the baseline problem with 300 weapons. It

therefore appears that as the size of the problem increases this fra :tion tends towards one

half. Finally note that if 150 weapons are used in the first stage the lower bound on the

value of the solution is 10.54. This again shows that using half of the weapons in the first

* stage results in a near-optimal solution.
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Table 10: Baseline Problem with higher kill probability but less weapons

The baseline problem: except that the kill probability of each weapon-target pair in each

of the stages is 0.8 and the defense has 100 weapons:

STATIC CASE:

Optimal solution: [0,0,0,0,0,20,20,20,20,20]

Optimal value: 3.32

DYNAMIC CASE:

Number of weapons used in first stage: 70

Assignment of these weapons: [0,0,0,10,10,10,10,10,10,10]

Lower bound on value of this solution: 6.25

Upper bound on optimal value: 6.53

REMARKS:

For this problem we have decreased the number of weapons but increased their kill proba-

bility. Note that although there are few weapons the dynamic strategy can still make more

effective use of them than the static one. Also note that we can consider the defense as

having 80 perfect weapons (Mp). If we look at the baseline problem with a kill probability

of 0.5 then the defense can be considered as having 100 weapons. However the optimal value

for the former problem is about 6.4 while that of the latter is about 5.7. This indicates

that looking at the problem in these terms (i.e. perfect weapons) can be 2ry misleading.

However, since 200 weapons are used for the baseline problem and there - 100 targets let

us con-ider the equivalent kill probability if a target is double shot. Since p = .5 then the

equivaulent Aill probabillty of two weap s10u.75. 1his corresponds to 75 perfect weapon. .

Using this approach we find that the baseline problem with a kill probability of 0.5 should

perform worse and indeed it does.

Te.ble 11: Baseline problem with different asset values

The baseline problem except that the asset values are given by IT" [1, 1, 1, 1, 1,3,3,3,3,3].

Note that the maximum possible expected value is 20.

_____ _ ___ ____



CHAPTER 5. THE DYNAMIC ASSET-BASED PROBLEM 196

STATIC CASE:

Optimal solution: [0,0,0,0,0,40,40,40,40,40]

Optimal value: 11.57

DYNAMIC CASE:

Number of weapons used in first stage: 110

Assignment of these weapons: [0,0,0,0,10,20,20,20,20,20]

Lower bound on value of this solution: 16.19

Upper bound on optimal value: 17.94

REMARKS:

Note that the optimal solution of the static problem is the same as for the baseline problem.

Since all of the larger valued assets are defended, the optimal value is three times that for

the baseline problem. On the other hand the optimal solution for the dynamic case is to

defend all of the larger valued assets with 20 weapons each and to defend one of the unit

valued assets with 10 weapons. Recall that in the baseline problem 9 of the assets were

defended in the first stage. Note that in this case 81% of the tot d asset value is sa.ed

compared to 71% for the baseline problem. This is expected because, since this problem is

non-uniform, the lower valued assets can be left undefended when a preferential defense is

used.

Table 12: Baseline problem with different kill probabilities

The baseline problem except that the kill probabilities in each stage is given by p"t) =

S~[.5, .5, .5, .5, .5, .68, .68, .68, .68, .68].

STATIC CASE:

Optimal solution: [0,0,0,0,0,40,40,40,40,40]

Optimal value: 4.50

DYNAMIC CASE:

Number of weapons used in first stage: 90

Assignment of these weapons: [0,10,10,10,10,10,10,10,10,10]
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Lower bound on value of this solution: 6.94

Upper bound on optima1 value: 7.23

REMARKS:

Note that the kill probabilities were chosen so (1- .5)(1 - .68) = (1- .6)2. In other words

double shooting in the baseline problem is equivalent in lethality to double shooting in this

problem with one low kill probability weapon and one high kill probability weapon. Note

that the performance of the static case is better than the performance of the static case for

the baseline problem. On the other hand the performance for the dynamic case is roughly

the same as that for the baseline problem. Therefore the effect of differing kill probabilities

is smaller in the dynamic problem.

Table 13: Baseline problem with different targets per asset

The baseline problem except that the number of targets aimed at each asset is given by

'- i --[5,5,5,5,5,15,15,15,15,15).

STATIC CASE:

Optimal solution: [5,5,5,5,5,0,0,0,0,75]

Optimal value: 5.61

DYNAMIC CASE:

Number of weapons used in first stage: 100

Assignment of these weapons: [5,5,5,5,5,0,0,15,30,30]

Lower bound on value of this solution: 7.65

Upper bound on optimal value: 7.81

REMA RKS.

The performance for the dynamic case is better than that for the baseline problem. Again

this is due to the fact that the number of targets per asset is not the same for all assets but

the average number of targets per asset is the same as for the baseline problem. Therefore

when a preferential defense is required the assets with many targets aimed for them will be

left undefended while the others would be defended.
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- I5.7 Concluding Remarks

In this chapter we ',tave presented the Dynamic Asset-Based problem together with a sub-

optimal algorithm for finding a good solution. We have also presented a method for ob-

taining ai upper bound on the optimal value. In our numerical results we have presented

examples which illust,ate various properties of the solution of the dynamic problem. We

also performed comparisons of the dynamic and static strategies. The main conclusions can

be summarized as follows:

e This is the most general of the problems considered and hence the most difficult. It

is also NP-Complete.

* Because of the difficulty of the problem it is necessary to use approximations. Fur-

thermnore, the value of an assignment cannot, in practice, be evaluated exactly because

of the number of operations required. Therefore this value must be estimated with

the use of simulations.

9 The sub-optimal algorithm presented performed well on the problenms on which it was

run. We believe that if this method is used on the more general version of the problem

it will also perform well.

e The Target-Based approximation approach to solving the problem is advantageous be-

cause it can make use of algorithms that have alrea Jy been developed for the Dynamic

Target-Based problem. However in its pure form (i.e. without any modifications), this

approach may perform poorly on problems for which a strong preferential defense is

optimal.

e In general wýi have found that the performance ofa dynamic strategy is roughly twice

that for the corresponding static strategy. An equivalent statement is that half as

many weapons are required for the dynamic problem to obtain the same level of

performance as the static one. These results show the importance of using a dynamic

approach. The increase in the computational complexity can be reduced by using
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approximations. We have found that simple approximations reduce the computational

0 complexity while only slightly degrading the performance.

There are several directions in which one may pursue the research of this chapter. One

can investigate the effect of kill probabilities which are dependent on both the weapon as well

as the target. There is also the problem of evaluation of an assignment. We used simulations

to do this but there may be other approaches. Since the assets and the weapons will be

geographically distributed one should also study distributed algorithms for the problem.

S1



Chapter 6

Summary and Conclusions

6.1 Summary

In this thesis we have considered a class of dynamic, nonlinear weapon-target allocation

problems. In particular we have studied the Static Target-Based, the Dynamic Target-

Based, the Static Asset-Based and the Dynamic Asset-Based Weapon-Target Allocation

Problems. The main application of these problems is in military defense models. Our

intent was to provide an intuitive understanding 3f the problems and their solutions.

The Static Target-Based WTA Problem was presented in chapter 2. In general this

problem is NP-Complete. However, in the case of a single class of weapons, the optimal

solution can be found efficiently. Lower bounds on the optimal solution of the general

problem can be found by relaxing the i~ltegrality constraints of the decision variables and

solving the dual of this problem. This bound is very helpful in judging heuristics for solving

the more general version (i.e. with many weapon classes) of the problem since it can be

used to estimate how close the heuristic solution is to the optimal one.

The Dynamic Target-Based WTA problem was presented in chapter 3. We have found

that this is a significantly more difficult problem than the static version. Under the as-

sumption of a single class of wc.apons, two decisions must be made, the optimal number of

weapons to be used in each stage and the optimal assignment of these weapons to targets.

The formor problem is difficult because many local optima may exist so that basically a

global search has to be done. The latter assignment problem is also difficult because of

200
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the analytical and computational complexity. However, for the case of two targets we have

shown that the Maximum Marginal Return algorithm produces the optimal solution. We

have aluo looked at other special cases of this problem for which optimal solutions were ob-

tainable. The costs of these solutions were then compared with the costs of the solutions of

the static problem. It was found that the defense can essentially double its arsenal by using

a dynamic strategy rather than a static one. Several analytical results were also obtained

for simple cases of the problem. These results have provided us with valuable insight into

the problem.

In chapter 4 we presented the Static Asset-Based WTA problem. This problem is more

difficult than the static Target-Based problem primarily because the objective function is

non-concave. Under the assumption of a single class of weapons, we proposed a sub-optimal
JI

algorithm for the problem. This algorithm also produces an upper bound on the optimal

value and in many cases it produces the optimal solution for the problem. Experimental

results have shown that, for most practical purposes, the solution produced by the algorithm

is optimal. We also presented several sensitivity analysis results.

The dynamic version of the Asset-Based WTA problem was presented in chapter 5. This

is the most general of all the problems considered and hence the most difficult. We presented

a sub-optimal algorithm for solving this problem under some simplifying assumptions. A

method for finding an upper bound on the optimal value was also given. Examples were

then presented to illustrate various properties of the solution of the problem. It was found

that the solution obtained by the sub-optimal algorithm was n ar-optimal for many of the

examples considered. Compaxisons of the optimal value of the dynamic problem were made

with those of the static Droblem. Theýse comparisons suggest that the performance of a

dynamic strategy is roughly twice that of the static one.

Our work has provided us with valuable insights into the class of problems that was

studird. From our results we were able to make conclusions which will help direct the

future of research into these problems. These will next be given.

-',v,,ral heuristics are available for the solution of the Static Target-Based problem. We

-i-i a.I.,I .I i
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believe that heuristics based on the Maximum Marginal Return algorithm are both efficient

and provide good solutions to the problem. We have proposed an optimal local search

algorithm for the problem under the assumption of weapon independent kill probabilities.

This algorithm also has the nice property that it can be implemented on a parallel computer.

This is an important property for the military defense applications since the problem has

to be solved in real time.

We believe that a Maximum Marginal Return algorithm will also work well for the

Dynamic Targe'-Based problem. We have shown that such an algorithm is optimal in the

case of weapon independent kill pr"rbabilities with two targets. For some simple cases we

have the following interesting result. If the number of stages is large then the same optimal

cost as that for the static problem can be obtained by using half the number of weapons

for the corresponding dynamic version of the problem. In other words, the defense can

essentially double its arsenal by going to a dynamic strategy. Note that, in terms of cost

performance this corresponds to a much greater increase in performance than a factor of

two, These results indicate that their is a great advantage in using a dynamic strategy

rather than a static one. The greater computational complexity of the dynamic strategy

compared to the static one can be greatly reduced by using simple approximations.

We have propk ed a sub-optimal algorithm for the Static Asset-Based WTA problem

which is, for most practical purposes, optimal. .'his result is supported by numerical evi-

dence. We believe the' this algorithm can be used as a basis for a. heuristic for the more

general version of the problem. For the case of military defense problems we believe that

the Asset-Based version should be given more attention since it more accurately models the

later stages of an attack. It also captures the idea of a preferential defense which makes

intuitive sense.

The Dynamic Asset-Based WTA problem has been the most general problem we have

considered. Nu- ierical experimentation has shown that our sub-optimal algorithm performs

well. This a&I rithm can be used as a basis for the more general version of the problem.

Numerical results show that the dynamic str. -tegy performs significantly better than a static
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on-'. For the problems we have considered the dynamic strategy had a cost performance

which was roughly twice that of the static one. The large computational complexity of the

dynamic problem can be significantly reduced by the use of simple proximations. Such

approximations were used in our algorithm. We believe that such approximations only

slightly reduce the cost performance for the dynamic strategy. Since the cost periormance

can be doubled with only a small increase in the computational complexity of the problem

we conclude that research should be concentrated on dynamic versions of the problem.

6.2 Directions for Further Research

There are several directions in which further research can be done. We will mention some

of these in this section.

The Target-Based WTA problem is a good model for the problem of military defense

for the early stages of the attack during which the defense does not know the intent of

the enemy. On the other hand, the Asset-Based problem is more applicable for the later

stages of the attack when the defense knows the detailed objectives of the offensive weapons.

An interesting question is how these two models can be combined into a dynamic model

in which the early stages are Target-Based while the later stages are Asset-Based. One

must also decide how many stages etc. should be considered. Furthermor., in a realistic

scenario the attack will not be simultaneous as we have assumed. How then car. a sequential

attack be appropriately included? And how should the stage variables be defined? These

questions suggest that there are many interesting problems in deciding on an appropriate

rc.....i. dyan~ .. m.d.l for- the problem.

Another issue that must be considered is that of coordination of the defen.i's weapons.

These weapons will be geographically distributed and will be controlled by different com-

puters. Questions that should be considered are: How often should these computers ex-

change information, what information should they exchange, how much information should

be exchanged, what typ, of network architecture should be used for communication, which

sens(.r information should be sent to which computer etc.? There are several questions to be



CHAPTER 6. SUMMARY AND CONCLUSIONS 204

asked and answered. The answers to these questions will depend on the weapons allocation

algorithm being used.

As we have see1L from our simple examples the computational complexity of the Weapon-

Target Allocation problem is enormous. Even the static version of the Target-Based problem

is NP-Complete. Furthermore these assignments must be done in real time since the dura-

tion of the attack may be short. In order to obtain near-optimal solutions as fast as possible

one would have to resort to parallel computers. In this case weapon-target allocation al-

gorithms which are easily parallelizable will have to be chosen. Such algorithms should

therefore be studied.

Another area of research which should be considered is the simulation of these algo-

rithms. In a realistic scenario there are several physical constraints on the problem which

should be taken into account. We believe that when this is done the number of feasible

solutions will be reduced significantly. One must therefore ask which of these constraints

,hould be considered to simplify the optimization problem. Several other effects should

also be included into the model such as the effect of a weapon-missile engagement on other

weapons and missiles.

One can see from the above that to properly model a realistic scenario one must include

several additional factors. The aim of this thesis was to look at the basic underlying problem

to gain some insight. We believe that a similar approach should be used to gain insight for

the additional factors mentioned above. These results can then be combined to produce

good heuristics.



Appendix A

Notation and Definitions

This appendix contains notation and definitions used throughout the thesis.

A.1 Notation

The following standard notation will be used in the thesis:

[x1 de r The snallest integer greater than or equal to z c R,

XJ 421 The largest integer smaller than or equal to x E W,

R = The set of natural numbers,

e- The set of real numbers,

Z4 12=f The set of non-negative integers,

ZI 4--"f The set of ordered n-tuples of non-negative integers,
: 'Lef [XI, X7,...,Xn ]r,

def t

ej - The it' column of the idenity matrix,

_U dex) f The ..... ,,,eIu ,,e of the random v•riahbl x,

ISI d The size of the finite set S,
IXI• Le,• [n'=, I,•,l2]1

(n) Lf n,

205
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A.2 Definitions

In this section we will present definitions of concepts which are used throughout the thesis.

Some references on this material are [13], [16] and [20].

The -ollowing arc some basic definitions from convex analysis.

Definition A.1 Given two points x, Y E R', a convex combination of them is any point

of the form

SAx" +(1-N)Y, AER and 0<A<_1.

If A $ O, 1 we say z is a strict convex combination of x and y.

Definition A.2 A set S C Rn is convex if it contains all convex combinations of pairs of
points x, y ES.

Definition A.3 LetS C Rn be a convex se. The function f: S -- R is convex in S if

for any two points x, y, E S

f(Ax+(1-A)y)_.Af(x)+(1-A)f(Y), AER and O<A<l.

Definition A.4 A function f defined in a convex set S C R" is called concave if -f is

convex in S.

Definition A.5 A function F : -- to be minimized is said to be unimodal over the

interval [a, b] if there exists a A that minimizes F over the interval and for A,, A-2 E [a, b]
such that F(A1 ) F(A), F(,\2) # F(A), and A1 < A; we have

"A2 < A implies F(A1 ) > F(A 2),

A, A implies F(Al) < F(A 2).
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We will next introduce some of the terminology used in optimization theory. The prob-

lems to be considered in this thesis have the following general form:

minimize f(x)

subject to x E S

The function f : -- R is called the objective function. The set S C n is called the

constraint set and the elements of the set S are called feasible solutions.

Definition A.6 The point zx E 5 is called a local minimum of f over S if for some

WV) < f(x) Vx E S such that IJx - x*II <e.

Definition A.7 The point x' E S is called a global minimum of f over S if

f(x*) < f(Z) Vx E S.

We next give some basic definitions from probability theory which will be used in the

thesis.

Definition A.8 Consider a sequence of n independent trials. Each trial has two possible

outcomes, a success and a failure. The probability that the outcome is a success is denoted

by p while that of a failure is denoted by q = 1 - p. The probability that k of these n trials

results in a success will be denoted by b(k; n,p) and is given by:

b(k;n,p) = (n)pkl _ p)-k.

The expected value of the random variable k is given by np and the variance is given by npq.

The following definitions are from Complexity theory.

Definition A.9 Let f(n), g(n) be functir is from the positive integers to the positive reals.

(a) We write f(n) E O(g(n)) if there exists a constant c > 0 such that, for large enough n,

f(n) < cg(n).
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(b) We write fn(n) E fQ(g(n)) if there exists a constant c > 0 such that, for large enough n,

f (n) 2: cg(n).

(a) We write f(n) E 0(g(n)) if there exist constants c, c' > 0 such that, for large enough

n, cg(n) f f(n) _ c'y(n).

-I
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"Appendix B

Proofs of Theorems

In this appendix we will present the MMR algorithm together with a proof of optimality.

We will also include proofs of theorems.

B.1 The MMR Algorithm

In this section we will introduce the Maximum Marginal Return (MMR) algorithm and

prove its optimality.

Let F : R" -- be defined as:
n

F(;F) = fi(xi) Xi E Z+, i =1, 2,..... n
' i=1

where each of the functions fj(z) has the property:

f,(X - 1.) - fi(X) 2_ fi(x) - fd(X + 1).

For any m E Z+ consider the following optimization nroblem:

rmin F(F) (B.1)

it

sabject to ZX, m.

The following algorithm, called the Maximum Marginal Return (MMR) algorithm, is opti-
mal for this problem.

procedure MMR
begin

z:=[0,'.., 0]T

209
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for i:= 1:n do Ai := fi(xi) - fi(zx + 1)
for j := 1:m do
begin

Let k be such that Ak = maxi{Ai};
Zk :. X + 1;
Ak f"(Xk) - fk(xk + 1);

end
end

This is basically a greedy algorithm. In each iteration the index k is found for which an

increase in xk by unity produces the maximum decrease in the objective function. The value

of Xk is increased by one and the process is repeated until the constraint is satisfied. If the

marginal return data is stored in heaps then the initial heap data structure requires 0(n)

operations to construct. In each iteration the maximum marginal return item is removed

and the heap must be reorganized. This requires O(logn) operations. Since there are m

iterations, the worst case complexity of the algorithm is O(n + in log n). We will next prove

the optimality of the algorithm.

Theorem B.1 The solution produced by the MMR algorithm is optimal for problem B.1.

Proof: The proof of this theorem for the special case in which the functions fi have the

form f(x) = V(1 - p);r is given in [4]. We have generalized their proof. The proof of the

theorem will be by induction. Note that th-: theorem is trivially true for the case m = 1.

Assume that it is true for rn = in. Denote the optimal solution for this case by Z. Now

suppose that:

fk(i)- fk(.tk + j) = MaX{f,(-ti) -f 1(2i + 1)) (B.2)
t

L. us dnte, •,• ••'l n puced I. the •Iorthm fw do €o =. • + 1 by :-. Notedei t the... ....... ... -pr A: d 'y t .e ............ .... ....... ii

that ;F* = X + eC. Let ;F be any feasibl:: solution to the problem with m = r+ -1- 1 other than

F'. There must exist some j such th;" zj :> x! > ij. Let X = Y + ej. We have

F(i) = F(•- ej) - [,f(zj - 1) -- fj(zj)]. (B.3)

We also have that

F(Ti) F(l) - [f1  ) - +(•. + 1)]. (B.4)

I--- - -____ ____ _______
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Since • is optimal for the case m = fn we have

F(e- ej.) >F(X) (B.5)

and by the assumptions on the functions fj stated in the problem we have

fj(tj) - fh(il + 1) > h (zj - 1) - fj(z,) (B.6)

since zj > ij. If we subtract B.4 from B.3 and use the inequalities B.5 and B.6 then we

can show that F(z-') > F(:). Furthermore one can use B.2 to show that F(") < F(•). We

therefore have that

F(z- > F(Y').

This implies that the solution Y is no better than the solution i* obtained by the algorithm

in the theorem. Since i can be any feasible solution we conclude that the solution obtained

by the algorithm for th, case rn f n + 1 is optimal, Therefore, by induction, the theorem

is true for all m > 0. U

B.2 Proof of Lemma 3.2

We need to prove that the function, qM-F,*(mt), is convex with respect to mt. The

function F(m:) is the optimal cost of the static problem with two targets and mt weapons.

Let us define

" ,. ~~~~G(m) =-q-F()

Since F* is defined only for integral values of m we need to show that

G(m - 1) - 2G(m) + G(m + 1) > 0

For any fixed value of m > 0 we can write:

F:(,k - V)= y~q" + V2 q' 2 .

. _ _ _ I.. ...
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If the number of weapons is increased by one then the additional weapons will be added to

the target with the maximmum marginzd return. Let us suppose, for convenience, that

VIpq l > V2pq9 (B.7)

so that the additional weapon goes to target 1 then

F;(m) = Vjq"+ + V2q'2.

If the number of weapons is further increased by 1 then we need to consider 2 cases.

CASE I: V2pq' >_ VipqI+l.

In this case target 2 has the maximum marginal return so that

F*(rn + 1) = Vlq"''+ + V2q'2+1.

We can now write

G(m - 1) - G(m) + G(m + 1) = qM-m-l[q 2F•(m - 1) - 2qF*(m) + F:(m + 1)]

= qM-Ml[Vlqr1-+l"(1 - q) + V2 q""+l(q - 1)]

= qM-'[Vlpqx1 - V2pq"2]

> 0.

The last inequality is a result of the inequality in B.7.

CASE II: V2pq?2 < Vlpq:+'l.

In this case target 1 has the maximum marginal return so that

F;(m + 1) = Vlqx•'1 2 + V2qX2 .

We can now write

G(m - 1) - G(m) + G(m + 1) = qm- -r[q 2Fr(m - 1) - 2qF.(m) + F."(rn + 1)]

= q-'w -[V 2qx2(q 2 - 2q + 1)]

= qM-m-lV 2 qX2,P'p2

> 0.

Therefore the function G(m) is convex which completes the proof.

. ___ ___.________.__ . ~ ~
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